IAEA Workshop
Wire Saw Technology

Dipl.-Ing. Daniel Knecht
Content:

1. History
2. Function and arrangement
3. Areas of application
4. Classification
5. Tool
History

- First diamond wire saw was used in Carrara 1968
 - Experiments with a galvanic bonded diamond wire on a stationary system
- Commercialization in the 80's
- Use of diamond wire saws in almost all marble quarries in 1984
- Economic processing of the blocks instead of uncontrolled extraction by blowing
Function impulse

- Impulse occurs through hydraulic engine or electric motor
- Pneumatic cylinder holds the wire on tension
Procedure arrangement

Embracing procedure

Source: Hilti
Procedure arrangement

Depth cut with blind bores

Source: Hilti
Areas of application

- Stone quarry
- Circle wire saw
- CNC Contour cut
- Disc cutting
Areas of application

■ Building industry
 ■ Dismantling of steel and reinforced concrete structures
 ■ Decommissioning of nuclear facilities
 ■ Underwater workings
 ■ Dry cut is possible → advantage in areas poor in water

■ Decommissioning of offshore platforms, ship wrecks and submarines
Classification

<table>
<thead>
<tr>
<th>Pro</th>
<th>Contra</th>
</tr>
</thead>
<tbody>
<tr>
<td>- High flexibility in application</td>
<td>- Large cut width (11 mm)</td>
</tr>
<tr>
<td>- High cut performance</td>
<td>- Sometimes rough cut surface</td>
</tr>
<tr>
<td>- Remote Handling</td>
<td>- High Risk of tool cracks and so a risk of injury for people</td>
</tr>
<tr>
<td>- Under water usable</td>
<td>- Preparation Drillings for fixing are necessary</td>
</tr>
<tr>
<td>- Low demand for drive power</td>
<td>- High tool costs</td>
</tr>
<tr>
<td>- No restrictions in the cutting depth and the shape of the work piece</td>
<td></td>
</tr>
<tr>
<td>- Low setup-time and costs</td>
<td></td>
</tr>
<tr>
<td>- Low noise emission</td>
<td></td>
</tr>
</tbody>
</table>
System dimensions

- Geometry
- Material
- Cut speed
- Contact force
- Input angle
- Contact length
- Tools

wire saw system

Cut time / -performance

Wear
Construction diamond wire

\[d_s = 10.8 \text{ mm} \]

\[l_{SA} = 25 \text{ mm} \]

1 m = 40 segments = 100 € +
Cut through a diamond segment

- There are two kinds of production procedures

Sintered segment
- Suspension cable
- Diamonds
- Basic body
- Sintered connection

Galvanic segment
- Suspension cable
- Diamonds
- Basic body
- Galvanic connection
Comparison diamond rope

- Comparison diamond rope with galvanic or sintered segments
Automated wire saw technology for underwater disassembly (ASTU)

Promoted by the Federal Ministry of Education and Research
Contents:

1. Initial position and problem
2. Objectives of the research project
3. Test stand
4. First results
5. Outlook
1. Initial position and problems

- The company Siempelkamp GmbH & Co.KG got the job of separating consoles in the nuclear fuel element basin in the nuclear power plant Obrigheim.
1. Initial position and problems

Demands

- Separation of austenitic material
- Applicable up to 8 m of water depth
- Smooth cut surfaces
- Remote handling
1. Initial position and problems

Selected procedure:
Wire saw

Preattempts and cold test were carried out in the test hall of the TMB.

It has been shown that the calculated cut time was crossed in practice around the 10-fold. To make the process more predictable this project was initiated.
2. Objectives of the research project

Test plan:

<table>
<thead>
<tr>
<th>Material S235JR Attempt</th>
<th>Row 1</th>
<th>Row 2</th>
<th>Row 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>t_1</td>
<td>t_1</td>
<td>t_1</td>
</tr>
<tr>
<td>2</td>
<td>t_2</td>
<td>t_2</td>
<td>t_2</td>
</tr>
<tr>
<td>3</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>4</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>10</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>11</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
</tbody>
</table>

Afterwards the same program for stainless steel (1.4301)
2. Objectives of the research project

The following parameters are recorded:

- Wire speed
- Wire contact pressure
- Driving power
- Wire kind and construction
- Test sample (material and geometry)
- Water temperature
- Contact force in the entry and escape of the cut sample
- Size distribution of the filings
2. Objectives of the research project

From the ascertained data a model should be developed, that enables making predictions to the optimum cut parameters for different geometry and materials.

\[\text{Cut time } t_s = f (v_c, F_s, P, S, G, k, \ldots) \]
3. Test stand
3. Test stand
3. Test stand

Control panel
4. First results

Comparison Testrows

- **S235JR** Row 1 rectangular cross
- **S235JR** Row 2 round
- **S235JR** Row 3 rectangular upright
- **1.4301** Row 4 rectangular cross

Time [s]

<table>
<thead>
<tr>
<th>V1</th>
<th>V2</th>
<th>V3</th>
<th>V4</th>
<th>V5</th>
<th>V6</th>
<th>V7</th>
<th>V8</th>
<th>V9</th>
<th>V10</th>
<th>V11</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>2500</td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td></td>
</tr>
<tr>
<td>3500</td>
<td></td>
</tr>
<tr>
<td>4000</td>
<td></td>
</tr>
<tr>
<td>4500</td>
<td></td>
</tr>
<tr>
<td>5000</td>
<td></td>
</tr>
</tbody>
</table>
5. Outlook

- Completion stainless steel rows
- Cuts with partial samples
- Developing model
- Edge influence
- Composite geometries
- Create a method to classify wear of diamond wires
Thank you for your attention