TRANSFER STUDY OF 14C and 3H BETWEEN AIR, GRASS AND COWS: VALIDATION OF TOCATTTA MODEL (VATO)

Denis MARO1

Séverine Le Dizès2 & Didier Hébert1

1IRSN/Laboratory of Continental Radioecology/Cherbourg-Octeville
2IRSN/DEI/Environmental Modelling Laboratory/Cadarache, St-Paul-lez Durance

IRSN / DEI / SECRE (France)
Context

- Uncertainties in transfer models of 14C and 3H in rural environment in case of accidental release due to a lack of global experimental data.

- In general transfer models are based on constant isotopic ratio and this concept is not very appropriate with accidental releases.

Necessary to acquire well-documented new data of concentrations of 14C and 3H in different compartments of the rural environment.
Objectives

- Estimate fluxes of 14C and 3H in a grassland ecosystem (Raygrass), in relation with:
 - 14C and 3H concentrations in air,
 - Climate conditions,
 - Land use (grazing, silage maize and hay).

- Study transfers of 14C and 3H to cows and milk in function of the alimentary diet.

In order to improve the TOCATTA model or another model.
- Originality: Using the atmospheric release of radionuclides of AREVA NC La Hague reprocessing plant to quantify the transfers of ^{14}C and ^{3}H in rural environment.
14C and 3H atmospheric releases

Lead to greater concentration than the background level in the environment
Example of OBT concentration measured in furze
Site location

Wind conditions 2008 - "Omonville La Petite". Wind speed (m.s⁻¹) and Direction (°)

« Atelier Nord »: a well located experimental site, considering the most frequent wind direction
Experimental design (sampling periodicity 1 month)

- 10 m mast with sonic anemometer (turbulence)
- Weather station
- Grass (Raygrass)
- CO₂ measurement acquisition (LICOR 7000)
- Farm
- Continuously Recording Field Monitor for Krypton-85
- Meteorological data acquisition
- ¹⁴C trapping device (bubble gas through soda)
Example of CO$_2$ atmospheric concentrations
Example of 14C concentrations

Does the model give a good representation of 14CO$_2$ between air and grass? No, as it uses constant isotopic ratio (no photosynthetic process).

To get a better model-measures comparison: need to rebuild 14C atmospheric concentrations on an hourly basis and use a dynamic model.
Krypton 85: a plume tracer measured with short periodicity (1 minute) compared with 14C (1 month)
Krypton 85: a good indicator of 14C atmospheric dispersion over a short periodicity

Need to rebuild hourly 14C atmospheric concentration with hourly 85Kr concentration and monthly 14C concentration

To obtain more precise 14C atmospheric concentrations for calculations
The results analysis needs dynamic modelling of 14C and 3H in plants, it’s necessary to take into account the modelling of photosynthesis.

Concerning 3H modelling in case of accidental release, it is also necessary to consider water transfer processes with a dynamic approach based on a short time step.

Ongoing discussions with INRA (Clermont-Ferrand) to use the PASIM* model.

PASIM* is a biogeochemical grassland ecosystem model that simulates fluxes of C, N, water and energy at the soil-plant atmosphere interface with hourly step time.

Agenda

Carbon 14

2007-2009 : Transfers between air, grass and soil
2009-2010 : Transfers to cow
2009-2010 : Model-measures comparisons
2010/2011 : Publication

Tritium

2010 : Measurement (speciation of 3H releases in air)
2010-2011 : Transfers between air, rain water, grass and soil… dry and wet deposition
2012 : Transfers to cow
2011-2012 : Model-measures comparison
2012 : Publication