The need for training in the metal recycling industry

International Conference on Control and Management of inadvertent Radioactive Material in Scrap Metal

Tarragona, February 2009
Contents

• An approach to the argentinean context | Acindar’s presentation

• Argentinean scrap market

• The importance of training

• Integrated radioactivity detection system

• Experiences

• Next steps
An approach to the Argentinean context
General information

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population (2006, million)</td>
<td>39</td>
</tr>
<tr>
<td>Surface (Continental area, Km²)</td>
<td>2,791,810</td>
</tr>
</tbody>
</table>

- Organized by federal provinces
- Part of MERCOSUR

An approach to the Argentinean context

- Organized by federal provinces
- Part of MERCOSUR
Acindar is a steelmaking company formed by private capitals.

• It's operations started in 1942, with a plant in Rosario (Santa Fe).

• Today it is the biggest private producer of non-flat steels in Argentina, with a market share of more than 50%.

• It produces more than 200 product lines for different markets.

• It employs approximately 3000 people and has more than 10 productive facilities in Argentina.

• It has a steel production capacity of 1,400,000 ton./year. In 2008, 1,372,000 tons of crude steel were produced.

• ArcelorMittal is the steel producing leader worldwide, with a capacity of 110M tons, 10% of the world's production.

Product Families

• Construction
• Industry
• Merchant Bars & Sections
• Wires
Argentinean scrap market
Argentina Scrap Market - Players

Total Market (est): **101,000 T/month**

<table>
<thead>
<tr>
<th></th>
<th>KT/M</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACINDAR</td>
<td>32</td>
<td>31.7</td>
</tr>
<tr>
<td>SCRAP</td>
<td>32</td>
<td>31.7</td>
</tr>
<tr>
<td>ACERBRAG</td>
<td>20</td>
<td>19.8</td>
</tr>
<tr>
<td>FOUNDRIES</td>
<td>10</td>
<td>9.9</td>
</tr>
<tr>
<td>ZAPLA</td>
<td>7</td>
<td>6.9</td>
</tr>
<tr>
<td>TOTAL</td>
<td>101</td>
<td>100</td>
</tr>
</tbody>
</table>

![Pie chart showing market share by player]
The importance of training
The importance of training

Learning

Learning is a change in behaviour, based on experience. It is a fundamental factor in human behaviour given that it affects not only the way people think, feel and do, but also their beliefs, values and goals.

Goals of training and development

• To prepare collaborators for the execution of diverse tasks and responsibilities in the organization.
 • Integration and communication
 • To enable continuous personal development.
 • Full commitment
 • To change collaborators attitude.
 • Enhances collaborator's performance

The contents of the training course could involve 4 types of behavioural change:

• Data transmission
• Skills development
• Attitude change or development
• Concept development
Integrated radioactivity detection system
From scratch

- Up to 2005, Acindar didn’t have scrap checked for radioactivity.

- The National Regulatory Authority (NRA) proposed the development of a culture of prevention, discussing it in regular meetings about radioactive sources and incidents registered in other countries.

- Arcelor reference document regarding management of possible radioactively contaminated materials introduced by the metal scrap was issued.

- Reference Document from Arcelor Committee on Radioactivity (2004) was issued.

- It was necessary to control the incoming scrap for radioactive contamination and therefore a project is created to buy and install detection equipment.

- The decision to establish a high standard control system was made.

- This brought along the need to modify processes and scrap yard layout as well as personnel training.
First steps

- Advisory meetings with the Nuclear Regulatory Authority (NRA)
- Benchmark with other facilities within the ArceloMittal group.
- Benchmark and advisory meetings with potential suppliers.
- Research and definition of the devices and system to be installed and it's needs.
- **Basic training** in radiological safety of radioactive sources for:
 - Safety manager and technicians,
 - Meltshop Manager and Maintenance coordinator,
 - Calibration lab chief and supervisor,
 - Project engineer,
 - Environmental engineer.
- **Specific formation** on radiological safety for use of industrial meters for:
 - Safety manager and technicians,
 - Meltshop Manager and Maintenance coordinator,
 - Calibration lab supervisor,
Evolution

- Truck's entrance portal detector
- Truck's outgoing portal detector
- EAF gas and dusts extraction
- Ducts (future)
- Melt shop lab
- Scrap yard

[Image of a map with labeled locations]
Entrance portal detector

- Big scintillation plastic detectors installed vertically at each side of the gate that translate radioactive energy into light pulses with truck movement detector.

- Data processing unit:
 - Radiation above the established limit level
 - Truck speed if higher than 5mph
 - Variations in the calibration of natural background level
 - Vehicle stopped
What Went Well

• Technical personnel trained by the supplier
• Maintenance plan
• Consults and diagnosis on the phone
• General and specific control, operation and emergency procedure definition.
• Equipment calibration routine.
Experiences

<table>
<thead>
<tr>
<th>Situations</th>
<th>What we did</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternate incoming gate for trucks without detection portal</td>
<td>A barrier with padlock was installed and the signals were improved to make the system less vulnerable.</td>
</tr>
<tr>
<td>Lack of training of the security personnel</td>
<td>Personnel was trained and handbook handed out. On the job training.</td>
</tr>
<tr>
<td>Lack of procedure in case of portal failure</td>
<td>Included in the general safety procedure. Manual meter and dosimeter were bought.</td>
</tr>
<tr>
<td>Stop functioning in case of blackout</td>
<td>A battery was installed to guarantee the energy income.</td>
</tr>
<tr>
<td>Alarm for NORM perforation materials</td>
<td>Material is separated, revised and levels are measured and informed to the NRA.</td>
</tr>
<tr>
<td>Alarm for refractory materials</td>
<td>Samples were taken in 20 trucks with refractory material to establish a reference value for this load type.</td>
</tr>
<tr>
<td>Oxygen supplier's trucks have a source that caused real alarms</td>
<td>The source was identified and security personnel was informed.</td>
</tr>
<tr>
<td>Real alarm with no vehicle on the portal</td>
<td>After a thorough investigation a contractor was discovered doing a gammagraphy in a duct 300m away from the portal.</td>
</tr>
</tbody>
</table>
Experiences

- Equipment sensitivity
- NRA consult and update of general and emergency procedures. Involved personnel training.
- Event detection software development (driver, plates).
- Alarm administration software (notices)
- Social responsibility (supplier's material control)
- Background information gathered as backup for the decision to install a detection portal.
- Additional training for safety technicians, doctors and melt shop project engineer.
- Continuous casting personnel awareness.
The scrap yard operation is carried out by Multiserv, so their personnel was trained.
Acindar’s notification was included in their procedures in case of alarm and the need to isolate the potentially contaminated material.
Experiences

<table>
<thead>
<tr>
<th>Situation</th>
<th>What we did</th>
</tr>
</thead>
<tbody>
<tr>
<td>The scrap yard was relocated and the operation handed out to a contractor</td>
<td>New operations were defined and new general and emergency procedures were created.</td>
</tr>
<tr>
<td>Lack of training in new contractor's personnel</td>
<td>Personnel trained and handbooks handed out. On the job training.</td>
</tr>
<tr>
<td>Unit mounted on a mobile structure, doesn't allow continuous energy</td>
<td>A battery RF equipment was installed, daily recharged.</td>
</tr>
</tbody>
</table>

The crane operator has the percentile background radioactivity level detected by the equipment.

It is possible to program prenotice levels and detection alarms that the equipment uses to inform the operator any detections. If the maximum level is detected, a DANGER window will be displayed and a sound alarm will trigger.
Lab detector

The system has 2 basic components:

a - two iodize sodium scintillation detectors (Nal),
c - multichannel radioactivity analyzer.

Data analysis and alarms are done locally by lab personnel.

<table>
<thead>
<tr>
<th>Situation</th>
<th>What we did</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lack of knowledge and experience</td>
<td>Basic training with Supplier, extra specific training, consults to supplier.</td>
</tr>
<tr>
<td>Record data storage necessity</td>
<td>Connection of the equipment to SAP</td>
</tr>
<tr>
<td>Definition of the necessary test pattern</td>
<td>Studies and prototypes to define the most appropriate pattern.</td>
</tr>
</tbody>
</table>
Integrated network
Next steps
Our goal

• To create a work group -at a national level- liderated by the N.R.A. to establish common norms and procedures of radiological safety with the objective of sustaining an appropriate level of people’s and environment protection, achieving full commitment to this preventive culture.

• To achieve a knowledge and experiences exchange on a per patient basis to help unify criteria.

• It is not enough to have wishes, one must also accomplish."

• To establish awareness needs of the principal players involved in the scrap handling process.

• To work together, recyclers, recuperators, Custom, gatherers, governments and Non Governmentalist Organizations (NGOs).

• To achieve general awareness of the importance of this issue.

“It is not enough to have knowledge, one must also apply it.

Johann Wolfgang von Goethe
THANK YOU FOR YOUR ATTENTION