Monitoring of Scrap Metal – Experience with Radioactive Sources and Activation/Fission Products

S. Thierfeldt
Brenk Systemplanung GmbH, Aachen
Overview

- Entrance Pathways for Radioactivity into Scrap
- Precautions by the Scrap Metal Industry, Equipment
- How to Proceed when Radioactivity is Detected
- Considerations of the Scrap Industry and Steel Manufacturers
- Considerations of the Nuclear Industry
- Conclusions

- Acknowledgement:
 - The preparation of this paper has been financially supported by the OECD Nuclear Energy Agency’s Working Party on Decommissioning and Dismantling (WPDD)
Entrance Pathways (1)

- **Main pathways** for entrance of radioactivity into scrap:
- Radioactivity of *natural origin* (NORM):
 - scale or crud on inner surfaces
 - pipes and large vessels or containers
 - originating e.g. from the oil and gas industry
- Radioactivity of *artificial origin*:
 - radiation sources
 - not properly removed / handled when device is scrapped
 - e.g. sources contained in technical or medical instruments
Entrance Pathways (2)
NORM

- Examples for NORM:
 - dismantling / refurbishment of U mining and milling industry
 - coal mining, e.g. from facilities for mine drainage,
 - prospection, extraction and milling of ore and fossil fuels
 - water treatment facilities including sludges
 - industrial products (welding electrodes, parts of jet engines, incandescent mantles, moulding sands)
 - construction material
 - phosphate fertiliser production
 - paper industry
 - optical industry
 - refractory material
 - chemical industry
Entrance Pathways (3)
Artificial Origin

- Examples for artificial origin:
 - industrial sources for measuring thickness or density
 - industrial sources for radiography, e.g. for inspection of welds
 - medical sources, e.g. for radiotherapy
 - sources used for applications in research and development
 - contaminated or activated scrap from the illicit removal of material or devices from nuclear installations
 - cleared material, where the residual contamination or activation is below legally prescribed clearance levels
Measurement Equipment (1)
Overview

- Measurement equipment
 - mainly in the form of radiation portal monitors (RPM)
 - mainly used in gross-gamma counting mode
 - spectroscopic systems also available
Measurement Equipment (2)

Features

- **RPMs**
 - usually equipped with *plastic scintillator monitors*
 - detection limit for gross-gamma counting:
 - in the range of a statistically significant increase of dose rate > 5 nSv/h above background
 - continuous measurement of background

- **Spectroscopic mode:**
 - evaluation of the counts in specified channel ranges (energy ranges)
 - gives indication on presence of radionuclides of artificial and natural origin
 - but e.g. no distinction between NORM and Ra-226 source
 - support cautious approach when Co-60 or Cs-137 detected
Measurement Equipment (3)
Features

- Spectrometric RPMs
 - also use NaI detectors – higher energy resolution
 - improves identification rates and NORM rejection
 - higher costs

- Example:
 - fissile material in principle identifiable by increase in low-energy bins

![Graph showing counts vs. channel number with bins labeled Bin 1 (low), Bin 2 (medium), Bin 3 (high)]
Background count rate depends on:
- varying radiation from the environment
- shielding of the conveyance and load between detectors

RPM has to accurately detect position of vehicles.

Background reduction / empty conveyance, no source

<table>
<thead>
<tr>
<th>Time [s]</th>
<th>Count rate [cps]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3000</td>
</tr>
<tr>
<td>2</td>
<td>4000</td>
</tr>
<tr>
<td>4</td>
<td>5000</td>
</tr>
<tr>
<td>6</td>
<td>6000</td>
</tr>
<tr>
<td>8</td>
<td>7000</td>
</tr>
<tr>
<td>10</td>
<td>8000</td>
</tr>
</tbody>
</table>

Background reduction / conveyance with scrap, no source

<table>
<thead>
<tr>
<th>Time [s]</th>
<th>Count rate [cps]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3000</td>
</tr>
<tr>
<td>2</td>
<td>4000</td>
</tr>
<tr>
<td>4</td>
<td>5000</td>
</tr>
<tr>
<td>6</td>
<td>6000</td>
</tr>
<tr>
<td>8</td>
<td>7000</td>
</tr>
<tr>
<td>10</td>
<td>8000</td>
</tr>
</tbody>
</table>
Detectable activities of radionuclides depend on:
- nuclide (energies)
- position inside scrap load
- density of scrap
Measurement Equipment (6)

Conclusions

- RPM are mature and reliable
 - as long as detection limits are observed
 - limited use of “spectroscopic” systems
- Features needed for every-day use:
 - robustness, high reliability, easy operation
 - low detection limit, i.e. optimisation for gross gamma counting
 - low error rate (avoidance of false alarms)
- For spectrometric systems:
 - variable adjustment of the region of interest to distinguish between NORM and artificial sources
Procedures after Detection of Activity (1)
General Considerations

- There is no optimum procedure
- Procedure depends on case:
 - origin of load, possibility of presence of high-active sources
 - measured dose rate, localisation
 - experience and knowledge of the personnel

- It is no solution to just send back the scrap
 - proper determination of activity contents
 - alert scrap yards, foundries, steel works in the vicinity to prevent the driver from taking the scrap elsewhere
 - sending back may be illegal, depending on the activity
Procedures after Detection of Activity (2)

Procedures

- Proposal for **dose rate action levels in Germany** (1997):
 - criterion: **highest dose rate at outside of conveyance**
 - dose rate < 5 µSv/h:
 - approaching and investigation of scrap possible
 - visible inspection may reveal NORM as cause: melting can take place
 - prolonged exposure should be avoided
 - material may be sent back or melted
 - dose rate > 5 µSv/h
 - prevent conveyance from leaving premises or direct it to a place where scrap can be unloaded
 - radiation protection specialists should be brought in to assure protection of the workers
 - material may be melted if only contamination present
Procedures after Detection of Activity (3) Procedures

- Proposal for dose rate action levels in Germany (cont.):
 - dose rate > 100 µSv/h:
 - stop work in vicinity of conveyance immediately
 - prevent conveyance from leaving
 - erect a barrier at dose rate line of ~ 5 µSv/h
 - call in the authorities
 - further approach may only be made by radiation protection specialists
Procedures after Detection of Activity (4)
Implementation of Procedures

- Actual implementation of procedures based on dose rate action levels in Germany:
 - depends on the authorities of the administrative district
 - is often based on two dose rate action levels:
 - below lower action level:
 - action to be decided by the scrap yard, foundry, steel work etc.
 - between both action levels:
 - actions have to be agreed with the authority (information, not necessary involvement)
 - above higher action level:
 - any further action may be unsafe, radiation experts need to take over
Procedures after Detection of Activity (5)
Implementation of Procedures

- General procedure:
 - a) alarm is triggered by the RPM
 - b) make sure that this is a real alarm by passing the lorry or freight car through the detectors several times
 - c) ascertain detection of radioactivity by additional dose rate measurements at outside of conveyance
 - d) move conveyance to place nearby suitable for unloading and separating the scrap if dose rate permits
 - e) separate and measure the scrap, determine relevant radionuclides, secure radioactive material by radiation protection experts
 - f) determine how to proceed on the basis of the results of the radiological assessment
Procedures after Detection of Activity (6)

Procedures at Borders

- **RPM at borders**: various tasks
 - detection of **large radiation sources**
 - detection of **fissile material** (U, Pu)
 - detectors optimised for detection of photons and neutrons
 - **detection limits usually higher** than of RPMs at entrance gates

- **Alarm at RPM at border**:
 - material is usually prevented from entering the country
Considerations of the Scrap Industry and Steel Manufacturers (1)

- General tendency:
 - prevent radioactivity of any origin to enter the steel pool
 - no distinction of origin of radioactivity
 - cleared material, NORM, sources etc.

- Criterion:
 - any material with dose rate above background levels is regarded as radioactive

- Contracts:
 - general clauses in standard contracts:
 - presence of activity in the scrap constitutes a fault
 - gives the buyer the right to reject the scrap
 - consignor has to bear costs for locating and removing activity or for sending back the load
Considerations of the Scrap Industry and Steel Manufacturers (2)

- **Standard clause in contracts in Germany:**
 - “… we guarantee that we will deliver only such **scrap** that has been monitored with our own measurement equipment to be **free of ionising radiation**. Therefore, we … can declare to the best of our knowledge that on the basis of the aforementioned measurements, that the **scrap will be free of ionising radiation above ambient background radiation**.”

 (translated)
Considerations of the Scrap Industry and Steel Manufacturers (3)

● Relevance for clearance:
 - interests of the scrap industry and steel manufacturers are disparate to those of the nuclear industry
 - activity that remains undetected in RPM will not be regarded as radioactivity by the scrap industry
 - sufficiently small amounts of gamma emitting radionuclides that will not be detected
 - large amounts of beta or alpha emitting radionuclides which cannot be detected at all

● Problems will occur:
 - if RPMs at vendor (consignor) and buyer (consignee) are different
 - if the configuration of the load has changed during transport, altering shielding and position of activity
Considerations of the Nuclear Industry (1)

Relevance of Clearance

- Relevance of clearance:
 - Clearance of material is an essential part of material management within the nuclear industry
 - in particular for decommissioning of nuclear installations
 - material is usually decontaminated to meet clearance levels
 - but some residual activity will remain on surfaces (or in material from activation)

- Nuclear industry has an interest
 - to keep clearance a viable option
 - to sell scrap for melting
Considerations of the Nuclear Industry (2)
Recommendations on Clearance

- Clearance levels for metals:
 - several international recommendations
 - many national regulations

- Examples:
 - EU:
 - Recommendation RP 122 part I on general clearance
 - RP 89 on clearance of metal scrap (prescribed first use)
 - IAEA:
 - Safety Guide RS-G-1.7 “Application of the Concepts of Exclusion, Exemption and Clearance”
 valid for all types of materials.
Considerations of the Nuclear Industry (3)
Clearance Levels

- Overview of clearance levels for selected radionuclides:

<table>
<thead>
<tr>
<th>Purpose</th>
<th>H_3</th>
<th>C_14</th>
<th>Ni_63</th>
<th>Co_60</th>
<th>Cs_137</th>
<th>Sr_90</th>
<th>U_235</th>
<th>Am_241</th>
<th>Pu_239</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unconditional clearance, RP 122/1 [6]</td>
<td>100</td>
<td>10</td>
<td>100</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.1</td>
<td>0.1</td>
<td>Bq/g</td>
</tr>
<tr>
<td>Unconditional clearance, RS-G-1.7 [8]</td>
<td>100</td>
<td>1</td>
<td>100</td>
<td>0.1</td>
<td>0.1</td>
<td>1</td>
<td>-</td>
<td>0.1</td>
<td>0.1</td>
<td>Bq/g</td>
</tr>
<tr>
<td>Metal scrap for recycling or reuse, RP 89 [7]</td>
<td>1,000</td>
<td>100</td>
<td>10,000</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Bq/g</td>
</tr>
<tr>
<td>Building rubble, RP 113 [15]</td>
<td>100</td>
<td>10</td>
<td>1,000</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.1</td>
<td>0.1</td>
<td>Bq/g</td>
</tr>
</tbody>
</table>

- Example Co-60:
 - 0.1 Bq/g unconditional (general) clearance (reuse/recycling)
 - 1 Bq/g clearance for melting only
 - reason for difference: melting is prescribed first use
Detection of scrap load with cleared material depends on:

- nuclide composition
 - presence of gamma emitting radionuclides
- clearance level
 - e.g. 0.1 or 1 Bq/g for Co-60
- exhaustion of clearance levels
 - general case: ~ 10 – 50 % exhaustion
 - determines average activity levels e.g. for Co-60:
 0.01 … 0.05 Bq/g for unconditional (general) clearance
 0.1 … 0.5 Bq/g for clearance for melting
Considerations of the Nuclear Industry (5)
Detection of Cleared Material

- Example:
 - scrap load, 1.5 Mg/m³ density, 20 m³, 30 Mg
 - shielding by side walls of lorry 0.5 cm
 - contamination by Co-60 only
 - for unconditional clearance levels, 30% exhaustion:
 - dose rate ~3 nGy/h in 50 cm → no detection
 - for clearance levels for melting, 30% exhaustion:
 - dose rate ~30 nGy/h in 50 cm → detection possible

- Conclusion:
 - use of unconditional clearance levels on the order of 0.1 Bq/g for Co-60 and use of standard clearance procedures ensures cleared metal scrap will not be detected in RPMs
Considerations of the Nuclear Industry (5)
Willingness to Accept Cleared Scrap

• Scrap dealers:
 ▪ absence of an alarm from a radiation portal monitor may be interpreted as absence of activity of any concern
 ▪ freight papers still tell about the origin of the material
 ▪ what will they do?

• Reasons for accepting material from nuclear installations:
 ▪ good quality, well sorted
 ▪ cleaned, no or very little impurities
 ▪ reliable source for a well-defined quantity arising for defined period of time (several years)

• A small number of scrap dealers in Germany accept material also with higher clearance levels
Conclusions (1)

- RPMs at entrance gates of scrap yards, steelworks, foundries etc.
 - generally capable of detecting dangerous activity levels
 - preventing radioactive sources from entering the facility
 - help avoiding harm to workers and general public
 - help averting financial disaster for the facility caused by melting a large radiation source

- RPMs
 - are reliable
 - can detect sufficiently low activities of gamma emitting nuclides even in larger scrap loads
 - generally operated with individual settings
 - absence of an alarm does not mean absence of activity
Conclusions (2)

- **Metal industry**
 - generally considers a *scrap load* to contain *radioactivity* if RPM produces an *alarm*
 - alarms based on increase in *dose rate above background*
 - accepts material where no measurable increase in dose rate is detected
 - procedure laid down in standard contracts

- **Nuclear industry**
 - needs *clearance* as integral part of material management
 - cleared material will usually not trigger alarms at RPM if “general clearance levels” are used (0.1 Bq/g Co-60)
 - has agreed special procedures with some scrap dealers to accept material even cleared with higher clearance levels