Management of Radioactive Residues & Wastes Generated During Remediation of Uranium Production Legacy Sites in Germany

Peter Schmidt, Wismut GmbH Chemnitz, Germany
Head of Department of Environmental Monitoring and Radiation Protection
The WISMUT Env. Remediation Project

- 1946 – 1990, Soviet-German WISMUT Company in East Germany, major uranium supplier to the Soviet Union (~ 216,000 tonnes of U)
- 1990, U production terminated (i.t.w. of German reunification)
- Legacies left behind: 300 Mio. m³ waste rock materials (65 dumps); 178 Mio. m³ rad. sludges (5 tailing management facilities; 3’700 hectares industrial areas, ...)
- Remediation funded by the German Government (7,1 b€)
- Physical work till 2028, long-term activities till 2045
WISMUT sites

Selected older U-sites beyond the Wismut project

Int. Symposium NORM VIII, Rio de Janeiro, October 18-21, 2016
Main remediation activities

- Demolition of Structures
- Mine Flooding
- Water Treatment
- WT residues Management
- Monitoring
- Stabilisation/coverage of radioactive sludges (tailings)
- Relocation/coverage of waste dumps
- Clearances/waste management

P. Schmidt: Management of radioactive residues and wastes generated during remediation at WISMUT sites
Residues and wastes generated during remediation

- Contaminated mine water, seepage and pore water
- Water treatment residues
- Scrap from demolition and dismantling
- Debris from demolition and dismantling
- Excavated soil from area clean-up and waste rock remediation

Reuse → Recycling for reuse → Sale → Long-term safe disposal
Water treatment

- At WISMUT, six water treatment facilities (WTF) in operation, with capacities from 200 – 1’150 m³/h
- Mine, seepage and pore water (U-nat: 2 - 50 mg/l; Ra-226: 1 - 5 Bq/l)
- Total annual water volume treated (2015): 17,4 Mio m³
- Main Technology: lime precipitation; at the Königstein also ion exchange
- Site-specific discharge limits: U-nat: max.300 µg/l; Ra-226: max. 800 mBq/l
Water treatment residues

<table>
<thead>
<tr>
<th>Site</th>
<th>Type of water treated</th>
<th>Hazardous Substances of concern</th>
<th>Annual volumes of water treated (mean 2010-2014)</th>
<th>Annual volumes of residues produced (mean 2010-2014)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>10^6 m3</td>
<td>%</td>
</tr>
<tr>
<td>Schlema</td>
<td>Mine water, seepage water</td>
<td>U, As, Ra-226</td>
<td>6,62</td>
<td>32,4</td>
</tr>
<tr>
<td>Ronneburg</td>
<td>Mine water</td>
<td>Heavy metals, U, As</td>
<td>6,11</td>
<td>29,9</td>
</tr>
<tr>
<td>Königstein</td>
<td>Mine water</td>
<td>U, Ra-226, heavy metals</td>
<td>3,50</td>
<td>17,1</td>
</tr>
<tr>
<td>Seelingstädt</td>
<td>Mine water, seepage water</td>
<td>U, Ra-226</td>
<td>2,18</td>
<td>10,7</td>
</tr>
<tr>
<td>Helmsdorf</td>
<td>Mine water, seepage water</td>
<td>U, As, Ra-226</td>
<td>0,97</td>
<td>4,8</td>
</tr>
<tr>
<td>Pöhla</td>
<td>Mine water</td>
<td>As, Ra-226</td>
<td>0,11</td>
<td>0,6</td>
</tr>
<tr>
<td>Andere 2)</td>
<td>Diverse</td>
<td>Diverse</td>
<td>0,95</td>
<td>4,6</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>20,45</td>
<td>100,0</td>
</tr>
</tbody>
</table>

2015: 30'000 t precipitates; ...100 Bq/g 238U, ...40 Bq/g 226Ra
40 t extracted uranium

Int. Symposium NORM VIII, Rio de Janeiro, October 18-21, 2016
WTF Schlema-Alberoda

- 1150 m³/h capacity
- discharge limits: max. 200 µg/l U-nat; max. 300 mBq/l Ra-226
WTF Königstein:
- 500 m³/h capacity
- mean discharge limits: 300 µg/l U-nat; 400 m Bq/l Ra-226
Management of WT residues (waste)

Sale of extracted uranium
- At a break-even price to a nuclear sector company; monitored by EURATOM,

Solidification and Immobilisation
- Sludge separation, dewatering (thickening, filter press)
- Embedding into a cement-based matrix

 (site-specific technologies to meet final disposal criteria, to consider the geo-/hydro-chemical and mechanical conditions)

Long-term safe disposal
- Engineered facilities
- In: waste rock piles, beach areas of tailings MF, mines
Residues from the Schlema water treatment plant

Pressing; cement mixing; filling in bigbags and disposal at an engineered facility at waste rock pile #371
Water treatment residues at the Königstein site

Sludge separation

Waste dump Schüsselgrund, disposal of WT residues

Transport of separated uranium for sale

Int. Symposium NORM VIII, Rio de Janeiro, October 18-21, 2016
Metallic scrap

- 260,000 t of metallic scrap
- Contamination: … 50 Bq/cm² surface total activity (TAA)
- Different nuclide vectors (rad. equilibrium, tailings, radon progenies, U concentrate)

Options:

- Unrestricted reuse (TAA < 0.05 Bq/cm²)
- Restricted reuse (smelting; TAA < 0.5 Bq/cm²),
- Safe disposal (TAA > 0.5 Bq/cm²), as for WT residues
- Reuse after de-contamination (clearance measurements)
- Re-use after separation (clearance measurement)
Decontamination of metallic scrap

Scrap shear

Decontamination facility
(abrasion mill; only for “core” scrap)
Decontamination of metallic scrap in combination with clearance measurements

Recent example (2014/2015):

- Demolition of the shaft complex #388/390, Königstein site
- Decontamination of surfaces by a water-jet system
- From 4’230 tons of metallic scrap, almost 2’020 tons could be released for smelting
Separation by clearance measurements

Re-use of lowly NORM-contaminated metallic scrap for smelting

Clearance criteria: Surface Total Alpha Activity \(TAA = 0,5 \text{ Bq/cm}^2 \)

Requires a special measurement methodology for clearance

WISMUT approach: screening measurements of the beta surface activity; calibration against alpha activity, statistical data interpretation; QA (lab)
Comparison of the TAA reference value (0,5 Bq/cm²) with the upper limit of the confidence interval (95 % confidence value)

TAA mean value = 0,11 Bq/cm²
Upper confidence limit = 0,14 Bq/cm²

Frequency distributions of TAA values for a heap of scrap metal at WISMUT
Excavated soil from area and waste rock pile remediation

- 14.5 Mio t (cumulative total at end of clean-up)
- U-238: 0.2 – 10 Bq/g; Ra-226: 0.2 – 10 Bq/g

Relocation to other waste dumps; disposal at Tailings facilities

Reuse options – limited!

- Only inside of WISMUT
- Refilling of the Lichtenberg open pit
- Contouring of surfaces of covered tailings ponds

Blending with inert material / dilution / use of material outside of WISMUT is not allowed (0.2 Bq/g classification level)
Tailings management facility Culmitzsch:

- Use of waste rock material from dump „Nordhalde“
- Contouring; construction of a hilly surface contour
- Drainage, two final discharge channels
Non-metallic waste from demolition (debris…)

- 14.5 Mio t (cumulative total at end of clean-up)
- U-238: 0.2 – 10 Bq/g; Ra-226: 0.2 – 10 Bq/g

Disposal
- non-contaminated waste: at landfills
- contaminated waste at WISMUT disposal sites (tailings ponds, rock piles)
- no enhanced efforts for separation
 (space is available, easy to get approval from mining authorities; cost-effective)

Approach is on that score different to approaches at D&D of nuclear facilities

Limited reuse (fill material, for slope stabilization)
Summary and conclusions

- Remediation of uranium productions legacy sites generates enormous amounts of “new” residues and wastes
- For their management, WISMUT has developed site and process specific solutions
- WISMUT benefits from available space for disposal
- Whenever possible, decontamination / recycling and re-use of material is envisaged (regulatory requirements)
- However, blending of material and its reuse out-side of WISMUT is not permitted
- Nonetheless, WISMUT case study provides ample basis for sharing experiences on the management of large amounts of residues and waste with elevated natural radioactivity
Many thanks for your attention …

and a warm „Glück Auf“