Aircrew exposure to cosmic rays
- Challenges and management -

Gerhard Frasch

Federal Office for Radiation Protection (BfS)
Germany

International Conference on Occupational Radiation Protection, 15. Dec. 2014, IAEA Vienna, Austria
Content

Cosmic radiation as existing exposure

Physical, economical and social impacts

Aviation and optimization

Globalisation and future challenges
High altitude radiation

Cruising altitudes: 10 - 15 km

- Protons (> 1 GeV)
- Pions, Neutrons
- Myons
- Elektrons
- Neutrinos
- Gamma
Solar activity in solar cycle 23 and 24
Geo-magnetic shielding of cosmic ray

Ambient dose rate by latitude and longitude in 11 km altitude, Dec. 2002
Change of route doses 2004 – 2014
(solar cycles 23 / 24, FRA - JFK, FRA - JHB, Epcard Net 5.4.3)

Δ = 28 μSv (56 %)

Δ = 3 μSv (12 %)
Radiation exposed workers
Monitored workers and collective doses in Germany, 2012

Radiation exposed workers in Germany (2012): ca. 400,000

Collective dose of radiation exposed workers in Germany (2012): 106 pers.-Sv
Mean annual dose in work sectors
Monitored persons with measurable doses, Germany 2004 - 2012

2009, solar minimum between 23. and 24. solar cycle
Monthly doses of aircraft crews
Germany, Dec. 2003 – June 2013
Frequency distribution of doses
German aircraft personnel, 2004 – 2009 - 2014

Flight attendants

2004
2009
2012

Pilots

2004
2009
2012
Typology of air crew members
Female flight attendants by age and dose, Germany, 2004

<table>
<thead>
<tr>
<th>Alter / Dosis [mSv]</th>
<th>0.1 - 0.5</th>
<th>0.6 - 1.0</th>
<th>1.1 - 1.5</th>
<th>1.6 - 2.0</th>
<th>2.1 - 2.5</th>
<th>2.6 - 3.0</th>
<th>3.1 - 3.5</th>
<th>> 3.5</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td><= 25</td>
<td>275</td>
<td>175</td>
<td>331</td>
<td>248</td>
<td>360</td>
<td>322</td>
<td>180</td>
<td>286</td>
<td>2.177</td>
</tr>
<tr>
<td>26 - 30</td>
<td>227</td>
<td>308</td>
<td>547</td>
<td>452</td>
<td>804</td>
<td>722</td>
<td>398</td>
<td>244</td>
<td>3.702</td>
</tr>
<tr>
<td>31 - 35</td>
<td>261</td>
<td>417</td>
<td>576</td>
<td>424</td>
<td>640</td>
<td>606</td>
<td>259</td>
<td>85</td>
<td>3.268</td>
</tr>
<tr>
<td>36 - 40</td>
<td>261</td>
<td>474</td>
<td>875</td>
<td>641</td>
<td>711</td>
<td>509</td>
<td>227</td>
<td>28</td>
<td>3.726</td>
</tr>
<tr>
<td>41 - 45</td>
<td>85</td>
<td>211</td>
<td>570</td>
<td>453</td>
<td>404</td>
<td>324</td>
<td>97</td>
<td>8</td>
<td>2.152</td>
</tr>
<tr>
<td>> 45</td>
<td>47</td>
<td>111</td>
<td>255</td>
<td>263</td>
<td>299</td>
<td>306</td>
<td>122</td>
<td>9</td>
<td>1.412</td>
</tr>
<tr>
<td>Summe</td>
<td>1.156</td>
<td>1.696</td>
<td>3.154</td>
<td>2.481</td>
<td>3.218</td>
<td>2.789</td>
<td>1.283</td>
<td>660</td>
<td>16.437</td>
</tr>
</tbody>
</table>

Holm-Bonferroni test at multiple α–level: \(p < 0.05, 0.01, 0.001 \)
RP problems in aviation

<table>
<thead>
<tr>
<th>Protection principle</th>
<th>Application to aviation</th>
<th>Practical consequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance</td>
<td>lower cruising altitude</td>
<td>- more fuel consumption, - higher cost, - more environmental burden.</td>
</tr>
<tr>
<td>Shielding</td>
<td>at fuselage protective clothes, cruising along lower latitudes</td>
<td>- not feasible (weight), ineffective (energy), - ineffective, not acceptable, - not applicable, - ineffective: longer routes → more radiation exposure, - (see above).</td>
</tr>
<tr>
<td>Time</td>
<td>less block hours</td>
<td>- more part time personnel, - economically not acceptable</td>
</tr>
</tbody>
</table>
Optimization by work planning

- Allocation of personnel to route-mix

- Multi-type employment of pilots: long-haul / short-haul mix within aircraft families

Problems: Goal conflicts (flight attendants), costs
Optimization by flight planning

Calculation programs for cost-optimized flight routes:

Optimization criteria:
Fuel consumption, flight time \(+ route dose\)

\textit{Problem:} costs
Optimization en route
RP policy of IFALPA*

- Avoid flying above optimum flight level
- Avoid last step climb
- Avoid intermediate step climbs with following descent
- Cruise at lower flight level with true air speed of originally planned higher flight level (at least for the later part of flights)
- Act on ambient dose rate (on board dosemeter)

*) International Federation of Air Line Pilots' Associations
Global airspace at 12:00 GMT
Going global - via North Pole

Traffic Density for Northern Cross-polar Routes 2000-2010

© FAA Examination of Space Weather in Support of Aviation, AMS 7th Symposium on SWx, January 2010
Future challenges

• Development of new ultra-long-range aircraft
 (> 15,000 km, altitude 43,000 ft.)

• Longer non-stop flights
 (> 15 h, e.g. Singapore – New York)

• Increase of long-haul route doses: by 30 - 50 %
 (estimation by VC Cockpit, Germany)
How to manage?

- RP in aviation on international level

- Co-operation with national and international stakeholders, in particular pilot organisations

- Seek for synergy effects between radiation protection, flight safety and airline business needs.
Thank you!

Quelle: http://www.lens-flare.de/flugzeug-zwischen-wolken-5655.htm