

Session 3 Radiation effects and health risks from radiation exposure at the workplace Contributed papers

Rapporteur: Dr María del Rosario Pérez

Department of Public Health, Environmental and Social Determinants of Health

Summary of contributed papers

- Two contributed papers from Iran and Egypt
- 1. Occupational Radiation Exposure, DNA Damage and Genetic Polymorphisms in DNA Repair Genes (F. Zakeri et al)
- 2. Endothelial Progenitor Cells in Peripheral Blood of Cardiac Catheterization Personnel (S. Korraa et al.)

These papers have two common features

Study population:

health workers exposed during fluoroscopy procedures

One of the end points:

 frequency of micronucleus (MN) in peripheral lymphocytes (cytokinesis-block micronucleus assay)

Frequency of MN in peripheral lymphocytes

• The cytokinesis-block MN assay in peripheral blood lymphocytes is a validated technique of biological dosimetry (e.g. accidental exposures). It has been also used to evaluate levels of DNA damage in workers occupationally exposed to radiation.

- In addition to radiation, other genotoxic agents (e.g. tobacco) can increase the MN frequency.
- Baseline MN frequency depends strongly on age and gender.

Paper N° 131

Occupational Radiation Exposure, DNA Damage and Genetic Polymorphisms in DNA Repair Genes

F. Zakeri^{a,b}, MR Farshidpour^b, MR Rajabpour^b, MJ Ahmadpour^b, F. Mianji^{a,b}

- a) Nuclear Science and Technology Research Institute, Tehran, Iran
- h) Iran Nuclear Regulatory Authority, Tehran, Iran

Objective: to determine the relationship between genetic polymorphisms in genes coding DNA repair enzymes and the levels of DNA damage in interventional cardiology staff

Study population

Characteristic	Exposed group ^(a)	Control group
Males	59	38
Females	31	22
Total	90	60
Mean age (years +/- SD)	41.5 +/- 7.6	41.4 +/- 9.1
Mean last year exposure	3.5 +/- 2.7 mSv	-
Mean last 5 years exposure	11.2 +/- 10.5 mSv	-
Mean years of employment	9.5 +/- 6.7	-

(a) interventional cardiologists, technicians and nurses

End points in peripheral blood lymphocytes

Frequency of micronucleus

by cytokinesis-block micronucleus test in binucleated cells

Single nucleotide polymorphisms (SNPs)

by polymerase chain reaction combined with restriction fragment length polymorphism (PCR-RFLP genotyping assay)

In genes coding DNA repair enzymes:

- 1. XRCC1
- 2. OGG1
- 3. APE1
- 4. XRCC3
- 5. XPG

Results

- MN frequency significantly higher in:
 - exposed group vs. control group
 - within exposed group >3mSv/y vs. ≤3mSv/y
 - within exposed group >10 years vs. ≤ 10 years of exposure
 - exposed group carrying SNPS in the genes XRCC3 and XPG
 - control group carrying SNPs in the gene OGG1

Authors' conclusion

- Occupational exposure to IR in interventional cardiologists, technicians and nurses is associated to increased DNA damage (expressed as higher MN frequency).
- DNA damage was higher in individuals carrying genetic polymorphisms in DNA repair enzymes (SNPs), suggesting that this might represent a particularly vulnerable population (mutagenic and cancer risk).
- The relationship between MN and SNPs in genes involved in DNA repair may contribute to evaluate susceptibility to ionizing radiation in individuals occupationally exposed.

Paper N° 168

Endothelial Progenitor Cells in Peripheral Blood of Cardiac Catheterization Personnel

S. Korraa^a, MS Tawfik^a, A Zaher^b, M Maher^c

- a) Department of Radiation Health, National Centre for Radiation Research and Technology, Cairo, Egypt
- h) National Health Institute, Cairo, Egypt
- Faculty of Science, Suez Canal University, Cairo, Egypt

Objective: to evaluate the level of circulating endothelial progenitor cells and its correlation with DNA damage in staff exposed during fluoroscopy cardiac procedures.

Study population

Characteristic	Exposed group ^(a)	Control group
n Total	70	40
Smokers	34	-
Non-smokers	46	40
Mean age (years +/- SD)	42.8 +/- 5.2	42 +/- 4.8
Annual dose (range)	2.16 - 8.44 mSv/year	-

(a) Staff involved in fluoroscopy-guided cardiac catheterization in 3 hospitals in Cairo, Egypt

Biological end points

- Frequency of micronucleus
 by cytokinesis-block micronucleus test in binucleated cells
- Number of Endothelial Progenitor Cells (EPCs) in peripheral blood (PB)
- by flow cytometry with monoclonal antibodies for CD133, CD34 and kinase domain receptors (KDR)
- Plasma levels of stromal growth factor (SDF-1) using ELISA assay

Results

- The staff involved in fluoroscopy-guided cardiac catheterization (CC) presented:
 - Significantly higher micronucleus (MN) frequency
 - Significantly higher number of Endothelial Progenitor Cells (EPCs) in peripheral blood
 - Significantly higher plasma levels of stromal growth factor (SDF-1)
- Smoker CC staff exhibited higher MN frequency and SDF-1 and lower levels of EPCs than non-smokers

Authors' conclusion

- Staff involved in fluoroscopy-guided cardiac catheterization present and increased MN frequency, which is higher in smokers vs. non-smokers.
- Circulating EPCs numbers and SDF-1plasma levels, which are markers
 of endothelial activation/damage, are significantly increased in the
 radiation exposed group.
- The dual effect of IR and smoking (i.e. additive effect on inducing SDF-1 expression as other DNA damaging agents, with an opposite effect on the number of EPCs in peripheral blood) is interpreted as a regenerative process decreased by smoking.
- Further studies are needed to elucidate the role of EPCs as a potential marker of radiation exposure.

