Radiation Monitoring and Dose Assessment

Key requirements for the implementation of the principles of limitation and optimization in occupational exposure

Hans-Georg Menzel
Int. Commission on Radiation Units and Measurements, ICRU

Int. Conference on Occupational Radiation Protection, IAEA, Dec. 2014
ICRP Publication 26
“Birth” of modern radiation protection

- No practice shall be adopted unless it produces a net benefit (Justification)

- All exposures shall be As Low As Reasonably Achievable, economic and social factors taken into account (Optimization)

- Doses to individuals shall not exceed limits (Limitation)
The definition of appropriate quantities, and their associated units, is a fundamental requirement for any scientific endeavour and for any practical applications of scientific knowledge.

In radiation protection, dosimetric quantities are required. (preferably a single quantity for all types of radiations and conditions)
New Dose Concept by ICRP following Publication 26

Enough **epidemiological** knowledge available to calculate a weighted whole-body dose.

Publication 26 described the weighting procedure but does not present the new quantity.

In a statement from the 1978 Stockholm Meeting of the ICRP the **effective dose equivalent**, H_E, was introduced following a proposal by **Wolfgang Jacobi and E Pochin**.
Effective Dose (ICRP 60)

The quantity enables the summation of doses from internal emitters and external radiation fields to provide a single numerical value for limitation and optimization for stochastic effects.

\[E = \sum_{T} w_T H_T = \sum_{T} w_T \sum_{R} w_R D_{T,R} [Sv] \]

- effective dose
- Organ equivalent dose
- (averaged) Organ absorbed dose
- tissue weighting
- radiation (quality) weighting

Int. Conference on Occupational Radiation Protection, IAEA, Dec. 2014
Determination of Effective Dose: Reference Values

(For internal emitters: committed effective dose)

\[E \cong H_p(10) + E(50) \]
Effective Dose:

The application is restricted to the control of stochastic effects and is based on the assumptions that

- at low doses - the total radiation detriment to an exposed person is given by the (weighted) average of radiation detriments to single organs
- organ dose equivalent is linearly correlated with detriment.

The applicability of this quantity and its underlying concept requires the use of a linear dose–risk model without a threshold (LNT model).
Requirement: Reference values
However, Effective Dose is not measurable!

Requirement:
Measurable quantities to assess effective dose

For **external radiation** ICRU introduced Operational Quantities

For **internal exposure** methods to assess intake are used and dose coefficients applied
Practical requirements

Why do we require operational dose quantities for external radiation exposure?

- The protection quantities equivalent dose in an organ or tissue and effective dose are not measurable.

- Control of dose limits needs the assessment of values of the protection quantities by measurements.

- Measurements need the calibration of instruments in terms of measurable quantities.
Operational Quantities for external radiation

Ambient dose equivalent $H^*(d)$

Personal dose equivalent $H_p(d)$
System of dosimetric quantities for external radiation

ICRP 74 and ICRU 57

Physical quantities
- Fluence, \(\Phi \)
- Kerma, \(K \)
- Absorbed dose, \(D \)

Calculated using \(Q(L) \) and simple phantoms (sphere or slab) validated by measurements and calculations

Operational quantities
- Ambient dose equivalent, \(H^*(d) \)
- Directional dose equivalent, \(H'(d,\Omega) \)
- Personal dose equivalent, \(H_p(d) \)

Related by calibration and calculation

Monitored quantities: Instrument responses

Protection quantities
- Organ absorbed dose, \(D_T \)
- Organ equivalent dose \(H_T \)
- Effective dose, \(E \)

Compared by measurement and calculations (using \(w_x \), \(w_T \), and anthropomorphic phantoms)

Reference phantom!

Fig. 1. Relationship of quantities for radiological protection monitoring purposes.

Int. Conference on Occupational Radiation Protection, IAEA, Dec. 2014
Operational Dose Quantities

Exposure limits (ICRP 103) are given in terms of:

- **effective dose**, E
- **equivalent dose to the skin**, H_{skin}
- **equivalent dose to the lens of the eye**, $H_{\text{eye lens}}$
- **equivalent dose to extremities**

<table>
<thead>
<tr>
<th>Task</th>
<th>Area monitoring</th>
<th>Individual monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitoring of effective dose</td>
<td>Ambient dose equivalent, $H^*(10)$</td>
<td>Personal dose equivalent, $H_p(10)$</td>
</tr>
<tr>
<td>Monitoring of equivalent dose to the skin and the extremities</td>
<td>Directional dose equivalent, $H'(0.07,\Omega)$</td>
<td>Personal dose equivalent, $H_p(0.07)$</td>
</tr>
<tr>
<td>Monitoring of equivalent dose to the eye lens</td>
<td>Directional dose equivalent, $H'(3,\Omega)$</td>
<td>Personal dose equivalent, $H_p(3)$</td>
</tr>
</tbody>
</table>

Int. Conference on Occupational Radiation Protection, IAEA, Dec. 2014
Implementation of protection and operational quantities for monitoring and dose assessments:

• **Legal and regulatory requirement:**
 Basic Safety Standards and the related national legislation and regulations provide the legal basis for their use in practice.

• **Practical requirements:**
 The practical implementation of these requires the use of instruments and their standardization and technical guidance (ISO, IEC, ...)

Int. Conference on Occupational Radiation Protection, IAEA, Dec. 2014
Regulatory Requirements

IAEA BSS:

Requirement 20:
The regulatory body shall establish and enforce requirements for the monitoring and recording of occupational exposures in planned exposure situations
IAEA BSS:
Requirement 25: Assessment of occupational exposure and workers’ health surveillance:

Employers, registrants and licensees shall be responsible for making arrangements for assessment and recording of occupational exposures and for workers’ health surveillance.
Practical Requirements

BSS:
Appropriate monitoring equipment is provided and arrangements are made for its proper use, calibration, testing and maintenance.

▶ Standardization of radiation monitoring:
e.g. By Technical Committee ISO/TC 85, Nuclear energy, nuclear technologies and radiological protection
IEC, DIN,
Challenges for external exposure

• Operational Quantities for external radiation have been introduced 30 years ago and are facing limitations and restrictions in their application:
 ○ at high radiation energies
 ○ due to conceptual difficulties (ICRU tissue of sphere, depth in sphere, ...)
 ○ Currently an ICRU Committee is reviewing the definition of operational quantities
Challenges

Problems at high energies

ICRU sphere

Kerma approximation
Challenges

• Dose coefficients for occupational intake of radionuclides (OIR) following the ICRP 103 recommendations need to be evaluated and published.

• Are equivalent organ doses suitable at high radiation doses?

• Radiation weighting factors are still based on few, not always pertinent scientific data (RBE values)
Concluding Remarks

• The ICRP radiation protection quantities and related measurement quantities have proved to play a fundamental role for the implementation of the limitation and optimization principle.

• The complimentary role of ICRP, ICRU, Basic Safety Standards (IAEA, EU) and international standards organization has led to an effective practical implementation of radiation monitoring and dose assessment in occupational exposure.

• Optimization using protection quantities has led to a substantial reduction of mean individual and collective doses.
Figure 27. Collective and mean doses for classified persons on CIDI 1986-2006
Thank you for your patience