Intern. Conference on Occupational Radiation Protection: Enhancing the Protection of Workers – Gaps, Challenges and Developments Vienna, 1 – 5 December 2014

Session 10: Occupational radiation protection in nuclear / fuel cycle facilities

Practical challenges in ongoing NPP decommissioning

<u>J. Kaulard</u> – TUV Rheinland Industrie Service GmbH, Cologne, Germany H. B. Okyar – OECD Nuclear Energy Agency, Paris, France

- ORP during decommissioning vs. operation
- Data on occupational exposure related to NPP decommissioning*)
- Contributors to a successful optimization in ORP for decommissioning
- Challenges and conclusions

*) Note:

Data labeled as "decommissioning" represent data from the ISOE database related to NPPs in "cold shut down" or "under decommissioning"

2 Dec. 2014 IAEA CN223 - Session 10: Prac. Challenges in ongoing NPP decommissioning, J. Kaulard (TIS), H.B. Okyar (OECD/NEA)

ORP during decommissioning vs. operation

- At first glance: ORP for "Decommissioning" is equal to ORP for "extended Outage"
 - no other "daily" challenges than during outage
 - procedures and protective measures from operation deem appropriate
- At a closer look: some aspects more relevant / new for decommissioning compared to operation, e.g. due to
 - continuous change of the facility status (technical, radiological relevant)
 - increased number of (long-lasting) work activities with interdependencies
 - access to workplaces, inaccessible during operation
 - (need for) deviations from plans on the conduct of work
 - high volume of radioactive / non-radioactive material flow
 - replacement of technical barriers by administrative ones (incl. PPE)
 - long-lasting increase of number of personnel during full year in RCA
- Experience: ORP is ensured, optimization is possible, but: aspects for further improvements exist

Data on the occupational exposure related to NPP decom.

Average annual collective dose per NPP worldwide

Dec. 2014 IAEA CN223 - Session 10: Prac. Challenges in ongoing NPP decommissioning, J. Kaulard (TIS), H.B. Okyar (OECD/NEA)

Annual collective dose of a PWR and a BWR at different stages

decommissioning*): 0,5 man.Sv/a

Data on the occupational exposure related to NPP decom.

Remarks on the occupational exposure data presented

- Average annual collective dose per NPP
 - higher for NPPs in operation than for NPPs under decommissioning*)
 - annual data for NPPs under **decommissioning***) strongly depend on
 - individual decommissioning schedule and annual work performed
 - reactor type and reactor generation
 - number of reporting NPPs
- Annual collective dose for single BWR / PWR during their life cycle
 - difference between operational phase and decommissioning phase about factor of 10, as e.g. during decommissioning
 - no spent fuel on-site
 - lower radiation fields due to full system decontamination
 - note: ratio not a "must" for any type of reactor and generation

Contributors to a successful optimization in ORP for decom.

- Several contributors known from operation important to optimization of ORP during decommissioning - spotlight on following three
 - 1. Overall planning process and work control
 - good practice from operation: planning of ORP as part of the overall planning process
 - → accordingly, planning for dismantling/repair/replacement/... mandatory
 - early integration of ORP experts in planning to ensure
 - relevant information are used / missing information are retrieved
 - work plans become ORP optimized, adequate protective measures are taken & ORP related preparatory work initiated (e.g. training)
 - extent of participation should be based on criteria
 - work permits to cover all ORP relevant instructions
 - graded ORP related work control (esp. close control in challenging / unknown situations or when individual / collective doses expected high)
 - need of experience feedback (e.g. comparison of planned / real doses)

Contributors to a successful optimization in ORP for decom.

- Several contributors known ... spotlight on following three (cont'd)
 - 2. Sound and robust system of ORP regulations
 - → Enable workers to react on changing radiological situations
 - Comprehensive system of at least two levels
 - higher level (stable) overall principles
 - (→ definitions, zones, action levels, characterization concept,...)
 - lower level (adaptable to changes) instructions for consideration during detailed work

(\rightarrow monitoring of work places / areas, measuring techniques, application of protective measures [which, when, ...], ...)

3. Radiation source control

- → keep contamination / dose rates ALARA to best influence exposure
- monitoring/influencing of inventory (→characterization, FSD,...)
- monitoring/influencing of dose rates and contamination levels
- control of source build up (→ logistic, transfer of rad. components ...)

Experience shows

- ORP for decommissioning can be based on ORP from operation, but adaptations might be needed to better meet the specific needs
- occupational radiation exposure (doses) for decommissioning is less than for operation (currently!)
- optimization in ORP during decommissioning does work
- However, important questions which should be address in the future are
 - how to improve the experience feedback between different projects considering, that commercial restrictions exist, that may limit the benefit of exchange
 - how to improve maintaining knowledge (esp. on concepts and procedures) and retaining an appropriate level of awareness on radiation related risks during decommissioning especially, if staff exchanges

Thank you for your attention!

TÜVRheinland[®] Precisely Right.

10 Dec. 2014 IAEA CN223 - Session 10: Prac. Challenges in ongoing NPP decommissioning, J. Kaulard (TIS), H.B. Okyar (OECD/NEA)