Occupational Radiation Protection: Stability and challenges in the view of the IAEA Basic Safety Standards.

Division of Radiation, Transport and Waste Safety Radiation Safety and Monitoring Section Miroslav Pinak

International Basic Safety Standards

Published in July 2014

IAEA Safety Standards

for protecting people and the environment

Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards

Jointly sponsored by EC, FAO, IAEA, ILO, OECD/NEA, PAHO, UNEP, WHO

General Safety Requirements Part 3

No. GSR Part 3

TOWARDS ENSURING APPROPRIATE LEVEL OF RADIATION PROTECTION AND SAFETY

Limits ... optimization ... constraints

Para 1.17: For planned exposure situations, exposures and risks are subject to control to ensure that the specified **dose limits for occupational exposure** **are not exceeded**, and **optimization is applied** to attain the desired level of protection and safety.

Para 1.22: **Dose constraints** are applied to occupational exposure and to public exposure in planned exposure situations.

Para 3.25: For occupational exposure and public exposure, registrants and licensees shall ensure, as appropriate, that **relevant constraints are used in the optimization of protection and safety** for any particular source within a practice.

If compared with 1996 BSS and 2014 BSS: What is the same (STABILITY) and What is principally different (CHALLENGES)?

Same:

three fundamental principles of radiation protection (ICRP26, 1971)

- justification (all exposure situations)
- optimization of protection (all exposure situations)
- dose limitation (planned exposure situations, except for patients)

Different:

- from: subdivision of RP system into Practices and Intervention
- to: holistic approach (i.e. to cover ANY exposure situation)
 - Planned exposure situations
 - Emergency exposure situations

Constraints, Limits

Reference levels

Occupational exposure as in BSS Chapter 3: **Planned Exposure Situations**

- **Requirements for occupational exposure**
 - Responsibilities of regulatory body
 - Monitoring and recording of exposures
 - Responsibilities of employers and licensees
 - Compliance by workers
 - Classification of (work) areas: controlled and supervised
 - Local rules and personal protective equipment
 - Assessment of occupational exposure
 - Information, instruction and training
 - Special arrangements pregnant and breast-feeding

women, persons under 18 years of age

STABILITY

Development of dose limits

DOSE LIMITS			
	Occupational exposure		Public exposure
	over 18 years of age	16 to18 years of age	
Whole body	20 mSv averaged over 5 years max 50 mSv in a single year	6 mSv	1 mSv
Lens of the eyes	20 mSv	20 mSv	15 mSv
Skin, extremities	500 mSv	150 mSv	50 mSv

CHALLENGES:

Selected Issue I: Responsibility

Responsibility for protection and safety

- To establish and maintain a legal, regulatory and organizational framework
 - Government

Prime responsibility

- Person or organization responsible for facilities and activities
- ➢Principal parties

Specified responsibility

Other parties

Selected Issue II: OPTIMIZATION

<u>1. Optimization</u> – as being formulated in the BSS

- SP5 of the IAEA Safety Fundamentals: Protection must be optimized to provide the <u>highest</u> level of safety that <u>can reasonably</u> be achieved.
- Optimization linked to ALARA: The optimization of protection and safety, when applied to the exposure of workers, members of the public and comforters and caretakers of patients undergoing radiological procedures, is a process for ensuring that the magnitudes and likelihood of exposures and the numbers of individuals exposed are as low as <u>reasonably</u> achievable, taking social and economic factors into account... (1.15)

2. Optimization – is it "process" or "end point"?

- ...Optimization is a forward-looking iterative process requiring both qualitative and quantitative judgments... (ICRP Publ.103)
- In the optimization process, the intended outcome would be that ALL exposures reach levels that are as low as reasonably achievable, social and economic factors being taken into account...

Optimization must satisfy both:

to be processed, and (this process) to be finished (i.e. reach levels) by leading to the expected conditions (e.g. ALARA)

however ...

... there is the legal issue too

- obligation "to be processed (i.e. subject of optimization process)" is ALREADY MET by starting the process
- however, obligation "to be optimized" is met ONLY IF the process ends with an optimized status

And then requirement(s) for optimization must read as:

In all exposure situations, each party with responsibilities for protection and safety shall ensure that protection and safety is optimized. (and NOT - "is subject to optimization process")

Both: "process" and "end point"!

Exposure to individual **BEFORE** optimization of protection and safety

WAY how to meet LEGAL OBLIGATION

PROCESS of optimization of protection and safety (ICRP Publ.101), *inter alia* to ensure equity of distribution of exposure by

- Shielding
- Distance from source
- Layout of facility
- Time of work with the source
- Number of workers, etc.

Exposure to individual **AFTER** optimization of protection and safety i.e. status when **P&S is optimized**

LEGAL OBLIGATION

3. Optimization – who is in charge?

Top to down approach:

• The <u>government or regulatory body</u> shall establish and enforce requirements for optimization of protection and safety. (Req. 11)

][

• Registrants and licensees shall ensure that protection and safety is optimized. (para 3.23) ← i.e. PRINCIPAL PARTY

• (Employers, registrants and licensees shall..) involve workers, through their representatives if appropriate, in optimization of protection and safety (para 3.77(a))

Selected Issue III: DOSE CONSTRAINT

Few thoughts on "dose constraints"

- What is dose constraint? It is prospective and <u>source</u> related value of <u>individual</u> dose... that is used in for the optimization of protection and safety... and serves as a **boundary** in defining the range of options **in optimization**.
- Is it dose limit?
 No.
 Limit is the value that must not be exceeded, and it is *a priori* set legally binding value.

When were dose constraints introduced?

- (1) Constraint *versus* limit only a linguistic problem?
- (2) Dose constraints in prospective evaluations and as one means of **initiating investigations** of actual operations
- (3) Risk of dose constraint being interpreted as an "additional" limit or as a new "standard of care" for workers
- (4) Dose constraint as only **one of many factors** in total **risk management**
- (5) Dose constraint in the process of optimisation
- (6) Need for education and training specifically addressing dose constraint?

Use and "not-use" of dose constraints

- Dose constraint serves as:
 - In planning stage: <u>tool for optimization</u> defining the range of options in optimization in the operation of any controlled source
 - In exposure stage: <u>benchmark</u> assessing the suitability of the optimized protection strategy (1.23)
- Dose constraints are <u>NOT</u> dose limits and exceeding a dose constraint should <u>NOT</u> represent a regulatory infraction, but could result in the implementation of follow-up actions (1.22)
- Dose constraints are <u>NOT</u> applicable to the exposure of patients to radiation for diagnosis or treatment. (1. 30)

SETTING OF DOSE CONSTRAINTS:

CROSSCUTTING ISSUES BETWEEN RESPONSIBILITY FOR RADIATION SAFETY AND OPERATIONAL EFFECTIVENESS

... and who shall set constraint ? (for occupational exposure)

The **regulatory body shall establish requirements** for optimization of protection and safety, ... **and establish or approve constraints**, as appropriate, for dose and risk, **or the process for establishing constraints**, ...

Occupational:

Employers, registrants and licensees ... shall ensure ... that protection and safety is optimized

i.e. <u>government or regulatory body</u> is NOT necessarily establishing constraints; AND it is ensuring protection and safety is optimized instead (e.g. by reg. and licensees)

Dose Constraints in Optimisation – National Regulations (few examples)

Countries of European Union:

• Relatively harmonized approach on adoption of the concept of **dose constraints** as it is recommended by the ICRP.

Northern America:

- Instrument of action level is used → level that trigger certain actions if it is reached.
- Optimization below action level is not required.
- Dose constraint is **not** directly **linked** to the **optimisation** (USA) and reaching pre-set dose level (dose constraint) **may trigger an action**.

Japan:

- Uniform introduction of dose constraints into regulatory system based on dose limits seems to be not necessary.
- Current system provides satisfactory operating flexibility.

Selected Issue IV: SPECIFIC CASE – OCCUPATIONAL EXPOSURE IN EMERGENCY

Exposure of emergency workers

Basic principle:

...(even in an emergency) relevant requirements for occupational exposure in planned explore situation shall apply...

 \rightarrow ILO: an emergency worker is a worker

- i.e. 20 mSv/year averaged over 5 years → maximum dose = 50 mSv/year
- **Exceptions:**
 - Life saving (<500 mSv)
 - Prevent severe deterministic effects (<500 mSv)
 - Avert large collective dose (<100 mSv)

Principle of voluntarily taken action:

The value of 500 mSv may be exceeded under special circumstances...and the worker volunteers to take the action and understands the health risk.

[in line with Gsr Part 3: Radiation Protection And Safety Of Radiation Sources: International Basic Safety Standards . Schedule IV, Table IV. 2]

... example of raising of maxim value for doses to workers undertaking interventions (Japan 2011)

Legal status (in 2011):

- IAEA BSS ed.1996: ... under specific circumstances (life saving, averting large collective dose and avoiding catastrophic conditions) the value can exceed 2x single year dose limit, but should not exceed it 10x, i.e. 10x50 = 500 mSv ...
- Japanese legislation: ... should not exceed 100 mSv (2x single year dose limit, i.e. no exception allowed)

On the order of the Prime Minister (15 March 2011, 23:48 JST):

100 mSv/y → 250 mSv/y

(still half of max 500 of the BSS)

Justification:

"Because at Fukushima 1, the level of **radiation is 400 millisieverts per hour**. The previous limit of 100 millisieverts means that <u>workers can work for only 15 minutes</u>; the new limit of 250 millisieverts means that they <u>can work for 30 minutes</u>."

The ministry (i.e METI-NISA) explained that "this is an emergency measure, taken in response to the Prime Minister's request, to prevent this nuclear disaster from escalating."

MOVING FORWARD TO THE IMPLEMENTATION

Development of Safety Standards: SG on Occupational Radiation Protection (in preparation)

- Following the revised BSS, jointly developed with ILO
- Combining the current five existing SGs on ORP
- DPP approved by CSS during in 2011
- Two CS held in 2012, overall review in the early of 2013
- Presented in the RASSC meeting in November 2013
- Sent to Member States for comments early of 2014
- Resolution of MSs comments in September 2014
- Approved at RASSC/WASSC/NUSSC in November 2014 for submission to CSS

Thank you for your attention

