IAEA SAFETY STANDARDS
for protecting people and the environment

STATUS: SPESS STEP 8
Submission to Member States for comments
Deadline: 31 December 2013

Predisposal Management of
Radioactive Waste from
Nuclear Fuel Cycle Facilities

DRAFT SAFETY GUIDE
DS447

Draft Safety Guide
PREDISPOSAL MANAGEMENT OF
RADIOACTIVE WASTE FROM
NUCLEAR FUEL CYCLE FACILITIES
CONTENTS

1. INTRODUCTION
- BACKGROUND ... 1
- OBJECTIVE ... 2
- SCOPE ... 3
- STRUCTURE ... 4

2. PROTECTION OF HUMAN HEALTH AND THE ENVIRONMENT
- RADIOACTIVE WASTE MANAGEMENT 4
- RADIATION PROTECTION 5
- PROTECTION OF THE ENVIRONMENT 5

3. ROLES AND RESPONSIBILITIES
- LEGAL AND ORGANIZATIONAL FRAMEWORK 6
- RESPONSIBILITIES OF THE REGULATORY BODY 8
- RESPONSIBILITIES OF THE OPERATING ORGANIZATION 10

4. INTEGRATED APPROACH TO SAFETY
- SAFETY AND SECURITY 14
- INTERDEPENDENCES 14
- MANAGEMENT SYSTEM 16
- RESOURCE MANAGEMENT 17
- PROCESS IMPLEMENTATION 18

5. SAFETY CASE AND SAFETY ASSESSMENT
- GENERAL ... 19
- SAFETY CASE ... 20
- SAFETY ASSESSMENT 21
 - Specification of the context for the assessment 22
 - Description of the facility or activity and the waste; 22
 - Development and justification of scenarios; 23
 - Formulation of models and identification of data needs 24
 - Performance of calculations and evaluation of results 24
- CENTRALIZED WASTE MANAGEMENT FACILITIES 25

6. GENERAL SAFETY CONSIDERATIONS
- INTRODUCTION ... 25
- WASTE GENERATION AND CONTROL 26
- CHARACTERIZATION AND CLASSIFICATION OF WASTE 27
- PROCESSING OF RADIOACTIVE WASTE 29
 - Introduction ... 29
 - Pretreatment .. 30
 - Treatment .. 31
 - Conditioning 34
- STORAGE OF RADIOACTIVE WASTE 35
- RADIOACTIVE WASTE ACCEPTANCE CRITERIA 36
- LIFETIME SAFETY CONSIDERATIONS 37
 - Siting and design 37
 - Construction and commissioning 40
 - Facility operation 40
 - Operational limits and conditions 41
 - Maintenance .. 42
 - Radiation protection programme 42
Emergency planning and response

Decommissioning

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Facility Specific Waste Management Programme</td>
<td>44</td>
</tr>
<tr>
<td>2</td>
<td>Examples of Hazards Associated with Waste Management Activities</td>
<td>46</td>
</tr>
<tr>
<td>3</td>
<td>Examples of Hazards Associated with Centralized Waste Management</td>
<td>51</td>
</tr>
<tr>
<td>4</td>
<td>Waste Specific Safety Considerations of Fuel Cycle Facilities</td>
<td>52</td>
</tr>
<tr>
<td>5</td>
<td>Examples of Management System Lifetime Provisions</td>
<td>56</td>
</tr>
<tr>
<td>6</td>
<td>Development of Specifications for Waste Packages</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Contributors to Drafting and Review</td>
<td>63</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

BACKGROUND

1.1 Radioactive waste (radioactive material for which no further use is foreseen, and with characteristics that make it unsuitable for authorized discharge, authorized use or clearance from regulatory control) arises from a number of activities involving the use of radioactive material. The nuclear fuel cycle produces a wide range of radioactive waste, including inter-alia: high-level waste (e.g., vitrified waste from spent fuel reprocessing), intermediate-level waste that typically contains longer-lived radionuclides, and low-level waste. The approach to treating liquid and gaseous waste streams influences the amount of effluent generated for discharge, and the approach to clearance and recycling influences the amount of waste for storage and disposal, with a large influence in the optimization of the overall radioactive waste management process (predisposal waste management and disposal). Thus, a key feature of predisposal management of radioactive waste at fuel cycle facilities is the interdependence between the steps of predisposal radioactive waste management as well as disposal within a national framework of waste management.

1.2 The principles and requirements that govern the safety of the management of radioactive waste are presented in the Fundamental Safety Principles SF-1 [1], and in the following IAEA Safety Requirements publications: Governmental, Legal and Regulatory Framework for Safety (GSR Part 1) [2], Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards (GSR Part 3) [3] and Predisposal Management of Radioactive Waste (GSR Part 5) [4]. Similar safety aspects and expectations for good practice have been set down in international legal instruments, such as the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management (Joint Convention) [5].

1.3 NS-R-5 [6] requires that measures to prevent or restrict the generation of radioactive waste are required to be considered place in the design of nuclear facilities and the planning of activities that have the potential to generate radioactive waste. This recognizes that the management of the material that generates radioactive waste is the key to avoiding or minimizing quantities produced.

1.4 Predisposal management of radioactive waste, as the term is used in GSR Part 5 [4], encompasses all steps from waste generation up to (but not including) disposal, including waste processing (pretreatment, treatment and conditioning) as well as storage and transportation. While the generation of radioactive waste at fuel cycle facilities is considered as part of normal operations, it is necessary to address the interdependences between the operational demands of each of the various steps in waste management.

1.5 It may be that not all processing steps are necessary for particular categories of radioactive waste. The type of processing necessary will depend on the particular categories of waste, its form
and characteristics, and the overall approach to its management, including consideration of the
generation of secondary waste. Where appropriate, the waste material resulting from the pretreatment
and treatment may be reused or recycled, or cleared from regulatory control in accordance with
national regulations. Such activities limit the eventual challenge associated with waste management.
The remaining radioactive waste from all sources that is not cleared, discharged or reused needs to be
managed safely over its entire lifetime. Lifetimes of certain waste streams are such that management
may fall outside the ability of the operating organization\(^1\) to deliver or may be dictated by the
availability of national assets (e.g. deep geological repository).

1.6 GSR Part 1 [2] requires the government to make provision for the safe management and
disposal of radioactive waste arising from facilities and activities. These provisions should be
included as essential elements of the governmental policy and the corresponding strategies over the
lifetime of facilities and the duration of activities. Importantly there is also a requirement for the
government to enforce continuity of responsibility between successive authorized parties.

1.7 In some instances there are several potentially conflicting demands in the predisposal
management of the waste that need detailed consideration to determine the optimal integrated
solution. Such considerations include the balancing of exposures of workers and/or those of members
of the public, the short term and long term risk implications of different waste management strategies,
the technological options available and the costs.

1.8 To select the most appropriate type of pretreatment, treatment and conditioning for the
radioactive waste when no disposal facility has been established, assumptions have to be made about
the likely disposal option. It is necessary to address the interdependences and the potential conflicts
between the operational demands of each of the various steps in waste management, while ensuring
that the waste is contained and stored in a passive, safe condition. In striking a balance between
choosing an option and retaining flexibility, it is important to ensure that safety is not compromised.

OBJECTIVE

1.9 The objective of this Safety Guide is to provide recommendations on the predisposal
management of radioactive waste generated by nuclear fuel cycle facilities (excluding nuclear power
plants and research reactors and facilities for the mining or processing of uranium ores or thorium
ores — both within larger facilities and at separate, dedicated waste management facilities, including
centralized waste management facilities).

1.10 This Safety Guide supersedes those parts of the following safety standards that are concerned
with the management of radioactive waste from such nuclear fuel cycle facilities: Safety Guides WS-

\(^1\) The operator is the generators of radioactive waste, including organizations carrying out decommissioning
activities, and operators of facilities for the predisposal management of radioactive waste [4].

1.11 The Safety Guide presents recommendations and guidance on how to meet the requirements established in the following IAEA Safety Requirements publications: GSR Part 3 [3], GSR Part 5 [4], Safety of Nuclear Fuel Cycle Facilities (NS-R-5) [6], Safety Assessment for Facilities and Activities (GSR Part 4) [7], and The Management System for Facilities and Activities (GS-R-3) [8].

SCOPE

1.12 This Safety Guide applies to the predisposal management of all types of radioactive waste generated by nuclear fuel cycle facilities (excluding nuclear power plants and research reactors) that may be managed within larger facilities or at separate, dedicated waste management facilities (including centralized waste management facilities). It covers all steps carried out in the management of radioactive waste following its generation up to (but not including) disposal, including its processing (pretreatment, treatment and conditioning), storage and transport. A classification scheme for radioactive waste and recommendations on its application to the various types of radioactive waste are provided in General Safety Guide GSG-1, Classification of Radioactive Waste [9].

1.13 While the recommendations in this Safety Guide are applicable to the generation of radioactive waste at nuclear fuel cycle facilities (excluding nuclear power plants and research reactors), operational activities at nuclear fuel cycle facilities are outside the scope of this Safety Guide.

1.14 Storage of radioactive waste and storage of spent nuclear fuel are not dealt with in detail in this Safety Guide. These are dealt with in the Safety Guides WS-G-6.1, Storage of Radioactive Waste [10] and SSG-15 [11]. Transport of radioactive waste is subject to the requirements of the Safety Requirements SSR-6 [12] and is not dealt with in detail in this Safety Guide. Spent fuel that is transferred to reprocessing facilities is not considered radioactive waste.

1.15 This publication is primarily targeted at complex situations that are typical in facilities for the predisposal management of radioactive waste arising from the nuclear fuel cycle and those wastes arising from facilities associated with medical isotopes produced from irradiation of nuclear materials. However, the regulatory body is required to adopt a graded approach, taking account of the hazards, the complexity and stage in the lifetime of the facilities and activities, and the characteristics of the waste, and should apply the requirements as necessary and as appropriate.

1.16 Although this publication does not specifically address non-radiological hazards or conventional industrial health and safety issues, these issues also have to be considered by national authorities, both in their own right and in as much as they may affect radiological consequences.
1.17 The Safety Guide does not provide recommendations on nuclear security of nuclear material and nuclear facilities or of radioactive material. Recommendations and guidelines on nuclear security arrangements at nuclear facilities and of radioactive material are provided in INFCIRC/225 [13] and in publications in the IAEA Nuclear Security Series, such as IAEA Nuclear Security Series No. 14 [14]. The Safety Guide considers nuclear security and accounting and control of nuclear material only to highlight their potential implications for safety.

STRUCTURE

1.18 to be added later

2. PROTECTION OF HUMAN HEALTH AND THE ENVIRONMENT

RADIOACTIVE WASTE MANAGEMENT

2.1 The safety objective and the fundamental safety principles established in SF-1 [1] apply to all facilities and activities in which radioactive waste is generated, processed or stored, for the entire lifetime of facilities, including planning, siting, design, construction, commissioning, operation, shutdown and decommissioning. This includes the associated transport of radioactive waste.

2.2 The Safety Requirements GSR Part 1 [2], GSR Part 5 [4], NS-R-5 [6] and GS-R-3 [8] provide requirements on management system for both the regulatory body and the operator that integrates all elements of management including safety, health, environmental, security, quality and economic elements so that safety is not compromised. A key component of such a system in an organization is a robust safety culture.

2.3 In the context of fuel cycle facilities, the control of events initiated by chemical hazards can have a significant bearing on achieving the fundamental safety objective. Events initiated by chemical hazards are required to be considered in the design, commissioning and operation of the facility. Activities at fuel cycle facilities may also include industrial processes that pose additional hazards to site personnel and the environment.

2.4 In controlling the radiological and non-radiological hazards associated with radioactive waste, the following aspects are also required to be considered: conventional health and safety issues, radiation risks that may transcend national borders, and the potential impacts and burdens on people of present and future generations and populations remote from present facilities and activities that give rise to radiation risks (SF-1) [1].
RADIATION PROTECTION

2.5 GSR Part 3 [3] states that the three general principles of radiation protection, which concern justification, optimization of protection and application of dose limits, are expressed in Safety Principles 4, 5, 6 and 10 stated in [1].

2.6 Requirements for radiation protection have to be established at the national level, with due regard to GSR Part 3 [3]. In particular, [3] require radiation protection to be optimized for any persons who are exposed as a result of activities in the predisposal management of radioactive waste, with due regard to dose constraints, and require the exposures of individuals to be kept within specified dose limits.

2.7 National regulations will prescribe dose limits for the exposure of workers and members of the public under normal conditions. Internationally accepted values for these limits are contained in Schedule III of GSR Part 3 [3]. In addition to the provision for protection against the exposures that will arise from normal operations referred to in the preceding paragraphs, provision has to be made for protection against potential exposure from operations outside normal conditions e.g. anticipated operational occurrences, incidents or accidents. Requirements for protection against potential exposure are also established in GSR Part 3 [3]. They include management and technical requirements to prevent the occurrence of incidents or accidents and provisions for mitigating their consequences if they do occur.

2.8 When choosing options for the predisposal management of radioactive waste, consideration has to be given to both the short term and the long term radiological impacts on workers and members of the public; (SF-1, ICRP 77, ICRP 81) [1, 15, 16].

2.9 Doses and risks associated with the transport of radioactive waste have to be managed in the same way as those associated with the transport of any radioactive material. Safety in the transport of radioactive waste is ensured by complying with SSR-6 [12].

PROTECTION OF THE ENVIRONMENT

2.10 Requirements for protection of the environment that are associated with predisposal management of radioactive waste have to be established by the relevant national regulatory bodies, with all potential environmental impacts that could reasonably be expected being taken into consideration (SF-1, GSR Part 3) [1, 3].

2.11 As stated in NS-R-5 [6] and GSR Part 3 [3] to achieve the fundamental safety objective of protecting people and the environment from harmful effects of ionizing radiation measures have to be taken:

(a). To control the radiation exposure of people and the release of radioactive material to the environment;
(b). To restrict the likelihood of events that might lead to a loss of control over source(s) of radiation; [and]

(c). To mitigate the consequences of such events if they were to occur.

2.12 NS-R-5 [6] further states that the operator has a duty in the area of radioactive waste management to take measures to avoid or to optimize the generation, and management of radioactive waste, including the consideration of requirements arising from disposal, with the aim of minimizing the overall environmental impact. This includes ensuring that aerial and liquid radioactive discharges to the environment are in compliance with authorized limits and to reduce doses to the public and effects on the environment to levels that are as low as reasonably achievable (optimization of protection).

2.13 Clearance (the removal of radioactive material within authorized practices from any further regulatory control) and the control of discharges (on-going or anticipated releases to the environment of gaseous or liquid radioactive material that originate from regulated nuclear facilities during normal operation) are addressed in IAEA Safety Standards Series No. RS-G-1.7 and WS-G-2.3 [18].

3. ROLES AND RESPONSIBILITIES

LEGAL AND ORGANIZATIONAL FRAMEWORK

<table>
<thead>
<tr>
<th>Requirement 1 (GSR Part 5, Ref. [4]): Legal and regulatory framework</th>
</tr>
</thead>
<tbody>
<tr>
<td>The government shall provide for an appropriate national legal and regulatory framework within which radioactive waste management activities can be planned and safely carried out. This shall include the clear and unequivocal allocation of responsibilities, the securing of financial and other resources, and the provision of independent regulatory functions. Protection shall also be provided beyond national borders as appropriate and necessary for neighbouring States that may be affected.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Requirement 2 (GSR Part 5, Ref. [4]): National policy and strategy on radioactive waste management</th>
</tr>
</thead>
<tbody>
<tr>
<td>To ensure the effective management and control of radioactive waste, the government shall ensure that a national policy and a strategy for radioactive waste management are established. The policy and strategy shall be appropriate for the nature and the amount of the radioactive waste in the State, shall indicate the regulatory control required, and shall consider relevant societal factors. The policy and strategy shall be compatible with the fundamental safety principles [2] and with international instruments, conventions and codes that have been ratified by the State. The national policy and strategy shall form the basis for decision making with respect to the management of radioactive waste.</td>
</tr>
</tbody>
</table>

3.1 The government is responsible for establishing a national policy and corresponding strategies for the management of radioactive waste. The management of radioactive waste should be undertaken within an appropriate national legal and regulatory framework that provides for a clear allocation of
responsibilities, and that ensures the effective regulatory control of the facilities and activities concerned [2, 4]. The policy and strategy, as well as the legal framework, should cover all types and volumes of radioactive waste generated in the State, all waste processing and storage facilities located in the State, and waste imported or exported from it, with due account taken of the interdependences between the various stages of radioactive waste management, the time periods involved and the options available.

3.2 The legal framework should also establish measures to ensure compliance with other relevant international legal instruments.

3.3 Where nuclear, environmental, industrial safety and occupational health aspects are separately regulated the regulatory framework should recognize that the overall safety is affected by the interdependences between radiological, industrial, chemical and toxic hazards and ensure that the regulatory framework identifies this and delivers effective control.

3.4 The legal framework should ensure that the construction, adjacent to a facility site, of installations that could prejudice the safety of the facility is required to be monitored and controlled by means of planning requirements or other legal instruments.

3.5 The management of radioactive waste may entail the transfer of radioactive waste from one operating organization to another organization and also from one national or governmental entity to another. Such transfers create interdependences between organizations as well as physical interdependences in the various steps in the management of radioactive waste. The legal framework should include provisions to ensure a clear allocation of responsibility for safety throughout the entire process, in particular with respect to interface with the storage of radioactive waste and its transfer between operating organizations.

3.6 The government is responsible for establishing a regulatory body independent from the owners of the radioactive waste or the operating organizations managing the radioactive waste, with adequate authority, power, staffing and financial resources to discharge its assigned responsibilities (GSR Parts 1 and 5) [2, 4].

3.7 Responsibility for safety should be ensured by means of a system of authorization by the regulatory body. For transboundary transfers between States, authorizations from the respective national regulatory bodies are required (GSR Parts 1 and 5) [2, 4].

3.8 Interdependences exist between the various steps in the management of radioactive waste. The national and regulatory framework should incorporate clear definitions of the content and responsibilities for the management of the interdependences.

3.9 A mechanism for providing adequate financial resources should be established to cover any future costs, in particular, the costs associated with the storage of radioactive waste, decommissioning of both the predisposal waste management facilities and the storage facilities and also the costs of long
term management of radioactive waste, if applicable. The financial mechanism should be established before licensing and eventual operation, and should be updated as necessary. Consideration should also be given to provision of the necessary financial resources in the event of a premature shutdown of the radioactive waste management facility or an early dispatch of the waste to a disposal facility.

3.10 The government should consult interested parties (i.e. those who are involved in or are affected by radioactive waste management activities) on matters relating to the development of policies and strategies that affect the management of radioactive waste.

3.11 In order to facilitate the establishment of a national policy and strategy, the Government should establish a national inventory of the radioactive waste (actual and expected, such as waste generated during decommissioning and dismantling of facilities) and update it at regular time intervals. This inventory should take into account the guidance in GSG-1 [9].

3.12 Facilities for predisposal management of radioactive waste should have sufficient capacity to process all waste generated and the storage capacity should be sufficient to account for uncertainties in the availability of facilities for treatment, conditioning and disposal.

3.13 The national policy and strategy should address the various waste classes as identified in GSG-1 [9] and their long-term management, from a technical point of view as well as from a resources point of view. It should take due account of social and economic developments.

RESPONSIBILITIES OF THE REGULATORY BODY

| Requirement 3 (GSR Part 5, Ref. [4]): Responsibilities of the regulatory body |
| The regulatory body shall establish the requirements for the development of radioactive waste management facilities and activities and shall set out procedures for meeting the requirements for the various stages of the licensing process. The regulatory body shall review and assess the safety case and the environmental impact assessment for radioactive waste management facilities and activities, as prepared by the operator both prior to authorization and periodically during operation. The regulatory body shall provide for the issuing, amending, suspension or revoking of licences, subject to any necessary conditions. The regulatory body shall carry out activities to verify that the operator meets these conditions. Enforcement actions shall be taken as necessary by the regulatory body in the event of deviations from, or noncompliance with, requirements and conditions. |

3.14 Regulatory responsibilities may include contributing to the technical input for the establishment of policies, safety principles and associated criteria, and for establishing regulations or conditions to serve as the basis for regulatory activities. The regulatory body should also provide guidance to operating organizations on how to meet requirements relating to the safe management of radioactive waste.

3.15 The regulatory review of the safety case for radioactive waste management facilities should follow a graded approach, particularly considering the phases in the lifetime of the radioactive waste.
management facility or activities. At each phase in the lifetime of these facilities, the safety case should be updated and reviewed by the regulatory body.

3.16 General recommendations for regulatory inspection and enforcement actions relating to radioactive waste management facilities are provided in GS-G-1.3 [19]. The regulatory body should periodically verify that the key aspects of the operation of the radioactive waste management facility meet the requirements of the national legal system and facility licence conditions, such as those relating to the keeping of records on inventories and material transfers, compliance with requirements for processing, storage, maintenance, inspection, testing and surveillance, operational limits and conditions, emergency preparedness and response. Such verification may be carried out, for example, by routine inspections of the radioactive waste management facility and audits of the operating organization. The regulatory body should verify that the necessary records are prepared and that they are maintained for an appropriate period of time. A suggested list of records is included in Safety Guide GS-G-1.4 [20].

3.17 The regulatory body should follow a graded approach in informing interested parties about the safety aspects (including health and environmental aspects) of the radioactive waste management facility and about regulatory processes and should consult these parties, as appropriate, in an open and inclusive manner. The need for confidentiality, e.g. for security reasons, should be respected.

3.18 The regulatory body should consider the licensing strategy to be adopted, for example:

(a) A licence issued for the entire lifetime of the generation, processing and/or storage system and/or facility, which encompasses the whole anticipated operating period, including periodic review of safety cases and safety assessments, as elaborated in Section 5; or

(b) A licence issued for a specified time period with the possibility for its renewal after expiration.

3.19 If the regulatory body consists of more than one authority, effective arrangements should be made to ensure that regulatory responsibilities and functions are clearly defined and coordinated in order to avoid any omissions or unnecessary duplication and to prevent conflicting requirements being placed on the operating organization. The regulatory functions of authorization, review and assessment, inspection, enforcement and development of regulations and guides should be organized in such a way as to achieve consistency and to enable the necessary feedback and exchange of information.

3.20 The regulatory review of the initial decommissioning plan for radioactive waste management facilities should follow a graded approach, particularly considering the phases in the lifetime of these facilities. The initial decommissioning plan should be conceptual and should be reviewed by the regulatory body for its overall completeness rather than for specific decommissioning arrangements, but should include specifically how financial and human resources and the identification and availability of
the necessary information, including records from the design, construction and operational phases will be ensured for when the decommissioning takes place. At each phase in the lifetime of facilities or activities, the initial decommissioning plan should be updated regularly by the licensee and updates should be reviewed by the regulatory body. If a facility is shut down and no longer to be used for its intended purpose, a final decommissioning plan should be submitted to the regulatory body for review and approval (where appropriate within the legal framework) [21].

RESPONSIBILITIES OF THE OPERATING ORGANIZATION

<table>
<thead>
<tr>
<th>Requirement 4 (GSR Part 5, Ref. [4]): Responsibilities of the operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operators shall be responsible for the safety of predisposal radioactive waste management facilities or activities. The operator shall carry out safety assessments and shall develop a safety case, and shall ensure that the necessary activities for siting, design, construction, commissioning, operation, shutdown and decommissioning are carried out in compliance with legal and regulatory requirements.</td>
</tr>
</tbody>
</table>

3.21 National policies and strategies and international cooperation in relation to safety of radioactive waste management can evolve over the lifetime of the facility. Policy decisions and technological innovations and advances can lead to fundamental changes in the overall radioactive waste management strategy. However, the operating organization retains its responsibility for the safety of facility and activities, and a continuous commitment by the organization remains a prerequisite to ensuring safety and the protection of human health and the environment.

3.22 The operating organization is responsible for the safety of all activities associated with the management of radioactive waste (including activities undertaken by contractors) in compliance with the principles contained in [1], and for the identification and implementation of the programmes and procedures necessary to ensure safety. The operating organization should demonstrate safety and maintain a robust safety culture. The operating organization should take measures to review and assess the safety culture periodically, and adopt and implement the necessary processes in order to strengthen the safety culture [8].

3.23 In some instances the operating organization may be the owner of the radioactive waste and in other cases the owner may be a separate organization or operating unit. In the latter case, the interface between responsibilities of the owner and the operating organization should be clearly defined, agreed and documented. Information about changes in ownership of the radioactive waste or changes in the relationship between the owner and the operating organization of the predisposal radioactive waste management facility should be provided to the regulatory body.

3.24 The responsibilities of the operating organization of a radioactive waste management facility typically include:
(a) Application to the regulatory body for permission to site, design, construct, commission, operate, modify or decommission a radioactive waste management facility;

(b) Conducting appropriate radiological safety and environmental assessments in support of the application for a licence and conducting periodic safety reviews;

(c) Operation of radioactive waste management facility in accordance with the requirements of the safety case, the licence conditions and the applicable regulations;

(d) Development and application of procedures for the receipt, storage and processing of radioactive waste and acceptance criteria;

(e) Ensuring that the waste acceptance criteria at a particular point in the predisposal radioactive waste management acknowledges the information required to meet the downstream waste acceptance criteria.

(f) Management of the information required either to support the onward disposition/storage of any radioactive waste or to support the decommissioning of that facility, especially where the latter may be many decades after operations have ceased.

(g) Providing periodic reports as required by the regulatory body (e.g. information on the actual inventory of radioactive waste, any transfers of radioactive waste into and out of the facility and any events that occur at the facility and which have to be reported to the regulatory body) and communicating with relevant interested parties and the general public.

(h) Derivation and implementation of limits, conditions and controls;

(i) Ensuring operations are in compliance with criteria for the removal of radioactive material within authorized practices from any further regulatory control and the control of discharges from a radioactive waste management facility as approved or authorized by the regulatory body and limit onsite contamination and occupational exposure;

(j) Taking into consideration measures that will control the generation of radioactive waste, in terms of volume and radioactivity content, to the minimum practicable;

(k) Ensuring that radioactive waste that is generated is appropriately processed to comply with the acceptance criteria for storage and disposal, as well as transport requirements. In situations where acceptance criteria for disposal are not yet
available, ensuring that the management of radioactive waste is based on specific assumptions for the anticipated disposal option;

(l) Taking into consideration the decisions that would have to be made
 - in the management of waste if no disposal option is available,
 - for waste that would need to be stored over long periods of time prior to disposal, or
 - in case of decay storage (e.g. of activated large components) with the purpose of subsequent clearance.

3.25 In case waste is generated at the facility, the operating organization should develop a facility specific waste management programme that:

 (a) implements the national waste management policy and strategy, as far as applicable
 (b) recognizes the connections between the sources of radioactive waste and the eventual discharge, disposal or onward disposition from that facility
 (c) recognizes the hierarchy of the following strategic options, which are applicable to predisposal radioactive waste management:
 (1) waste minimization in terms of type, activity and volume
 (2) reuse
 (3) recycling
 (4) processing, storage and disposal

More detailed guidance on facility-specific waste management programmes are provided in Appendix 1.

3.26 Requirements on decommissioning are established in WS-R-5 [21] and recommendations are provided in WS-G-2.4 [22]. At an early stage in the lifetime of a radioactive waste management facility, the operating organization should prepare preliminary plans for its eventual decommissioning. For new facilities, features that will facilitate decommissioning should be taken into consideration at the design stage; such features should be included in the decommissioning plan together with information on arrangements for how the availability of the necessary human and financial resources and information will be assured, for presentation in the safety case. For existing facilities without a decommissioning plan, such a plan should be prepared as soon as possible.

3.27 The operating organization should establish the requirements for training and qualification of its staff and contractors, including for initial and periodic refresher training. The operating organization should ensure that all concerned staff members understand to their required level, the safety case, the nature of the radioactive waste, its potential hazards and the relevant operating and
safety procedures. Supervisory staff should be competent to perform their activities and should therefore be selected, trained, qualified and authorized for that purpose. A radiation protection officer should be appointed to oversee the application of radiation protection requirements.

3.28 The operating organization should carry out pre-operational tests and commissioning tests to demonstrate compliance of the radioactive waste management facility and its activities with the requirements of the safety assessment/case and with the safety requirements established by the regulatory body.

3.29 The operating organization should ensure that the removal of radioactive material within authorized practices from any further regulatory control and the control of discharges of radioactive and other potentially hazardous materials to the environment are in accordance with the conditions of licence or authorization, and limit on-site contamination and occupational exposure with account taken of the results of optimization of protection and safety.

3.30 Discharges, clearance of materials from regulatory control, reuse or recycling of materials, as well as delivery of radioactive waste to an authorized disposal facility and transfers to other facilities should be documented. Such documents should be retained until the facility has been fully decommissioned, or alternatively by agreement with the regulatory body.

3.31 The operating organization should develop and maintain a records system on the generation, processing and storage of radioactive waste, which should include the radioactive inventory, location and characteristics of the radioactive waste, and information on ownership and origin [23]. Such records should be preserved and updated, to enable the implementation of the facility specific radioactive waste management programme. Such a records system should be managed as required by the national authority.

3.32 The operating organization should prepare plans and implement programmes for personnel monitoring, area monitoring, and environmental monitoring.

3.33 The operating organization should establish a process for authorization of modifications that includes evaluation of modifications to the radioactive waste management facility and activities, operational limits and conditions, or the radioactive waste to be processed or stored, using a graded approach which is commensurate with the safety significance of the modifications. The process of evaluating the potential consequences of such modifications should also consider potential consequences for the safety of other facilities and for the subsequent storage, reprocessing or disposal of radioactive waste.

3.34 The operating organization is required to put in place appropriate mechanisms for ensuring that sufficient financial resources are available to undertake all necessary tasks throughout the lifetime of the facility, including its decommissioning (GSR Part 1) [2].
3.35 The operating organization should draw up emergency plans on the basis of the potential radiological impacts of accidents (GS-R-2) [24] and should be prepared to respond to accidents at all times as indicated in the emergency plans (See Chapter 7).

4. INTEGRATED APPROACH TO SAFETY

SAFETY AND SECURITY

Requirement 5 (GSR Part 5, Ref. [4]): Requirements in respect of security measures
Measures shall be implemented to ensure an integrated approach to safety and security in the predisposal management of radioactive waste.

Requirement 21 (GSR Part 5, Ref. [4]): System of accounting for and control of nuclear material
For facilities subject to agreements on nuclear material accounting, in the design and operation of predisposal radioactive waste management facilities the system of accounting for and control of nuclear material shall be implemented in such a way as not to compromise the safety of the facility.

4.1 For a new facility, the site selection and design should take nuclear security into account as early as possible and also address the interface between nuclear security, safety and nuclear material accountancy and control to avoid any conflicts and to ensure that all three elements support each other.

4.2 The operator should assess and manage the interfaces between nuclear security, safety and nuclear material accountancy and control activities in a manner to ensure that they do not adversely affect each other and that, to the degree possible, they are mutually supportive.

4.3 When material is required to be accessed for waste management or safeguard purposes this should take account of requirements for radiation protection, and waste management as well as nuclear security considerations.

INTERDEPENDENCES

Requirement 6 (GSR Part 5, Ref. [4]): Interdependences
Interdependences among all steps in the predisposal management of radioactive waste, as well as the impact of the anticipated disposal option, shall be appropriately taken into account.

4.4 Interdependences exist among all steps in the management of radioactive waste, from the generation of the waste up to its disposal or, as far as practicable, removal of radioactive material within authorized practices from any further regulatory control and the control of discharge. In
selecting strategies and activities for the predisposal management of radioactive waste, planning should be carried out for all the various steps so that a balanced approach to safety is taken in the overall management programme and conflicts between the safety requirements and operational requirements are avoided. There are various alternatives for each step in the management of radioactive waste. For example, treatment and conditioning options are influenced by the established or anticipated acceptance requirements for disposal.

4.5 The following aspects in particular should be considered:

(a) The identification of interfaces and the definition of the responsibilities of the various organizations involved at these interfaces;

(b) The establishment of acceptance criteria, where necessary, and the confirmation of conformance with the acceptance criteria by means of verification tests or the examination of records.

4.6 A key feature of predisposal radioactive waste management within fuel cycle facilities is the nature of their interdependence and often their place within a national framework. Such interdependences create safety case interfaces, including waste acceptance criteria and limits and conditions and should be carefully managed along with any deviations that might occur for instance associated to those uncertainties.

4.7 Thus it is important to highlight that the interdependences should be taken into consideration such to ensure that an integrated approach to safety is adopted; and that safety (within a waste management framework that also takes into consideration waste minimization via adoption of the waste management hierarchy) is optimized.

4.8 Compliance of the waste packages with the waste acceptance requirements of the disposal facility should be demonstrated; however, in the case that a disposal option has not been identified at a certain stage, assumptions should be made about the likely disposal options and these should be set down clearly.

4.9 For many programmes for the management of radioactive waste, decisions about predisposal management of radioactive waste have to be made before the waste acceptance requirements for disposal are finalized. Decisions on the predisposal management of radioactive waste should be made and implemented so as ultimately to ensure compliance with the waste acceptance requirements for the selected or anticipated disposal option. In addition, in the design and preparation of waste packages for the disposal of radioactive waste, consideration should be given to the suitability of the packages for transport and storage, including retrieval, and to their suitability for handling and emplacement in a disposal facility on the basis of the anticipated waste acceptance requirements.
4.10 Given that disposal is the final step in the management of radioactive waste that cannot be otherwise cleared, discharged or reused, the selected or anticipated disposal option also needs to be taken into account when any other upstream radioactive waste management activity is being considered. However, in many Member States disposal facilities are not yet available in general or only for specific types of waste. In this case, proper determination and documentation of the characteristics of waste form, waste package and/or waste container should be ensured. Independent of this, all radioactive waste arisings are required to be managed, requiring decisions on waste forms to be produced which, in this situation, must be made before all radioactive waste management activities are finally established.

4.11 Where there is no disposal facility yet available or defined, then an interim position should be defined such that either options are not foreclosed or all reasonably practicable steps have been taken to prepare waste for the anticipated disposal option. The interdependences between the waste generation facility, predisposal radioactive waste management facility and the (existing or anticipated) disposal facility should also be defined.

4.12 Site and facility waste management programmes should identify all relevant interdependences and include arrangements to ensure that they are appropriately considered from the point of generation to the point of disposal. For example, the waste acceptance requirements for disposal should be known and appropriately considered when the waste is generated, recognizing that at the point of generation the controls and information associated with the waste will be aligned with the next stage of predisposal management of radioactive waste and that of the disposal facility. Thus the waste acceptance criteria for each step of predisposal management of radioactive waste should be aligned with the waste acceptance criteria of the next step of predisposal management of radioactive waste ultimately up to the waste acceptance requirements of the disposal facility.

MANAGEMENT SYSTEM

<table>
<thead>
<tr>
<th>Requirement 7 (GSR Part 5, Ref. [4]): Management systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management systems shall be applied for all steps and elements of the predisposal management of radioactive waste.</td>
</tr>
</tbody>
</table>

4.13 The requirements on management systems for all stages in the lifetime of a predisposal radioactive waste management facility are established in GS-R-3 [8]. General guidance on the management systems for facilities and activities is given in GS-G-3.1 [25], while specific recommendations on management systems related to the predisposal management of radioactive waste are provided in GS-G-3.3 [23].

4.14 An integrated management system (safety, health, environmental, nuclear security, quality and economic elements) is required to be established, implemented, assessed and continually improved by the operating organization and it should be applied to all steps of the predisposal management of radioactive waste [8]. The management system should foster a safety culture that...
should be aligned with the goals of the operating organization and should contribute to their achievement. Management systems should make provision for siting, design, commissioning, operation, maintenance and decommissioning of the predisposal radioactive waste management facility. Examples of management system lifetime provisions are provided in Appendix 2.

4.15 The management system should be designed to ensure that the safety of the radioactive waste management facilities are maintained, and that the quality of the records and of subsidiary information on radioactive waste inventories is preserved, with account taken of the duration of the management and storage periods and the consecutive management steps, for example, clearance, release, discharge, reprocessing or disposal. The management system should also include provision to ensure that the fulfilment of its goals can be demonstrated.

4.16 Managing radioactive waste involves a variety of activities that may extend over a very long period of time. These characteristics present a series of challenges to the development and implementation of effective management systems for a waste management programme, and give rise to the need for an integrated management system to deal with all matters that might affect the management of radioactive waste, including the financial provisions to carry it out.

4.17 For achieving and maintaining an integrated management system the following long term aspects should be considered:

(a) Preservation of technology and knowledge and transfer of such knowledge to people joining the operating organization in the future;
(b) Retention or transfer of ownership of radioactive waste and management facilities;
(c) Succession planning for the technical and managerial human resources;
(d) Continuation of arrangements for interacting with interested parties;
(e) Provision of adequate resources (the adequacy of resources for maintenance of facilities and equipment may need to be periodically reviewed over operational periods that may extend over decades); and
(f) Preservation of information.

RESOURCE MANAGEMENT

4.18 Radioactive waste management activities will require financial and human resources and the necessary infrastructure. Senior management of the waste generating facility should be responsible for making arrangements to provide adequate resources for radioactive waste management activities, to satisfy the demands imposed by the safety, health, environmental, nuclear security, quality and economic aspects of the full range of activities involved in the management of radioactive waste and the potentially long duration of such activities.
4.19 Where the management of radioactive waste is anticipated to be multi-decade then the government has to ensure that there are national policies and plans to maintain the underpinned knowledge associated with management of radioactive waste via national education and training required to deliver safety and environmental protection.

PROCESS IMPLEMENTATION

4.20 The management system should be periodically reviewed through the use of self-assessments, independent assessments, and management system reviews. It should accommodate the feedback of experience from implementation and from internal and external lessons learned. It should be flexible enough to accommodate changes in policy; in strategic aims; in safety, health, environmental, nuclear security, quality and economic considerations; and in regulatory requirements and other statutes.

4.21 Management systems should also be reassessed whenever the relationship between the owner of the radioactive waste and the operating organization of the facility changes (e.g. public organizations are privatized, new organizations are created, existing organizations are combined or restructured, responsibilities are transferred between organizations, operating organizations undergo internal reorganization of the management structure, or resources are reallocated).

4.22 In the design of facilities for long term radioactive waste management, consideration should be given to the incorporation of measures that will ease operation, maintenance of equipment and eventual decommissioning of the facility.

4.23 For long term radioactive waste management activities, future infrastructural requirements should be specified to the extent possible and plans should be made to ensure that these will be met. In such planning, consideration should be given to the continuing need for support services, spare parts for equipment that may eventually no longer be manufactured and equipment upgrades to meet new regulations and operational improvements, and to the evolution and inevitable obsolescence of software. Consideration should also be given to the need to develop monitoring programmes and inspection techniques for use during extended periods of storage.

4.24 Records concerning the radioactive waste and its storage that need to be retained for an extended period should be stored in a manner that minimizes the likelihood and consequences of loss, damage or deterioration due to unpredictable events such as fire, flooding or other natural or human initiated occurrences. Storage arrangements for records should meet the requirements prescribed by the national authorities or the regulatory body and the status of the records should be periodically assessed. If records are inadvertently destroyed, the status of surviving records should be examined and the importance of their retention and their necessary retention periods should be re-evaluated.
5. SAFETY CASE AND SAFETY ASSESSMENT

GENERAL

<table>
<thead>
<tr>
<th>Requirement 13 (GSR Part 5, Ref. [4]): Preparation of the safety case and supporting safety assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>The operator shall prepare a safety case and a supporting safety assessment. In the case of a step by step development, or in the event of modification of the facility or activity, the safety case and its supporting safety assessment shall be reviewed and updated as necessary.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Requirement 14 (GSR Part 5, Ref. [4]): Scope of the safety case and supporting safety assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>The safety case for a predisposal radioactive waste management facility shall include a description of how all the safety aspects of the site, the design, operation, shutdown and decommissioning of the facility, and the managerial controls satisfy the regulatory requirements. The safety case and its supporting safety assessment shall demonstrate the level of protection provided and shall provide assurance to the regulatory body that safety requirements will be met.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Requirement 15 (GSR Part 5, Ref. [4]): Documentation of the safety case and supporting safety assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>The safety case and its supporting safety assessment shall be documented at a level of detail and to a quality sufficient to demonstrate safety, to support the decision at each stage and to allow for the independent review and approval of the safety case and safety assessment. The documentation shall be clearly written and shall include arguments justifying the approaches taken in the safety case on the basis of information that is traceable.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Requirement 16 (GSR Part 5, Ref. [4]): Periodic safety reviews</th>
</tr>
</thead>
<tbody>
<tr>
<td>The operator shall carry out periodic safety reviews and shall implement any safety upgrades required by the regulatory body following this review. The results of the periodic safety review shall be reflected in the updated version of the safety case for the facility.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Requirement 22 (GSR Part 5, Ref. [4]): Existing facilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>For facilities subject to agreements on nuclear material accounting, in the design and operation of predisposal radioactive waste management facilities the system of accounting for and control of nuclear material shall be implemented in such a way as not to compromise the safety of the facility.</td>
</tr>
</tbody>
</table>
5.1 Requirements for the safety assessment for all facilities and activities are set in GSR Part 4 [7]. Requirements and guidance for the safety case and safety assessment for predisposal radioactive waste management facilities and activities are set in GSR Part 5 [4] and in the Safety Guide GSG-3 [26], respectively.

5.2 Prior to authorization of a radioactive waste management facility or a facility that generates radioactive waste, the operating organization should provide the regulatory body with a safety case that demonstrates the safety of the proposed activities and demonstrates that the proposed activities will be in compliance with the safety requirements and criteria set out in national laws and regulations. The operating organization should use the safety assessment to establish specific operational limits, conditions and administrative controls. The operating organization may wish to set an operational target level below the limits and controls to assist in avoiding any breach of those that may be approved.

5.3 The licensing documentation and the periodic safety reviews of fuel cycle facilities normally include the safety assessment and review of the radioactive waste management systems within the facility (NSR-5, SSG-5, SSG-6, SSG-7) [6, 27, 28, 29]. This includes at a minimum a safety analysis report and operational limits and conditions. The safety analysis report typically contains an analysis of the hazards associated with the operation of the facility, demonstration of compliance with the regulatory requirements and criteria, analyses of accidents, identification of structures, systems, and components (SSCs) important to safety.

5.4 For waste generated within a fuel cycle facility, the safety case for the fuel cycle facility should identify interfaces between the radioactive waste management facility and limits and conditions of the fuel cycle facility. In the event of a dedicated (centralized) waste management facility, the safety case and supporting safety assessment should demonstrate that consideration has been given to all steps in the management of the waste under consideration, from its generation to its disposal, and to their overall compatibility. Thus, short term, medium term and long term aspects of waste management should be considered, as well as the possible need for future handling and processing of the waste and the risks and doses that may be associated with these activities.

SAFETY CASE

5.5 The safety case and supporting safety assessment should provide the primary input to the licensing documentation required to demonstrate compliance with regulatory requirements with consideration of the integration of the whole of predisposal management of radioactive waste. Both should be sufficiently detailed and comprehensive to provide the necessary technical input for informing the regulatory body and for informing the decisions necessary at each step. An important outcome of the safety case and safety assessment is the facilitation of communication between interested parties on issues relating to the facility or activity, as well as substantiating the safety of the predisposal radioactive waste management facility and contributing to confidence in its safety.
5.6 The safety case should include identification of uncertainties in the performance of the facility, analysis of the significance of the uncertainties, and identification of approaches for the management of significant uncertainties. Such uncertainties should be a focus of an examination of the interdependences between safety cases.

5.7 As stated in GSG-3, compliance with the requirements for the documentation of a safety case presents a number of challenges; for example, due to the target audience being composed of a wide range of interested parties with different needs, expectations and concerns, as well as due to situations in which there are complex legal and regulatory requirements involving multiple regulatory agencies with different regulatory processes and where multiple levels of documentation are required. It should be noted that the regulatory authorities involved in the authorization of nuclear fuel cycle facilities are often larger in number due to the greater scope of safety concerns, for example, the management of large quantities of toxic and reactive chemicals.

5.8 As indicated in GSG-3 [26], the documentation of the safety case should cover at a minimum the safety assessment and the operating limits and conditions. There are a number of common elements that should be considered. These should include: the executive summary, the introduction and context for the safety case (or safety assessment), the strategy for safety, the safety assessment, integration of safety arguments synthesis and conclusions, a statement of confidence, and a plan for follow-up programmes and actions, as well as a summary of public involvement in development of the safety case.

5.9 The safety case and supporting safety assessment are to be reviewed and updated periodically as necessary to reflect actual experience and increasing knowledge and understanding (e.g. knowledge gained from scientific research), with account taken of any relevant operational feedback or other aspects that are relevant operational experience feedback or other aspects that are relevant for safety.

5.10 Facilities that were not constructed to present safety standards may not meet all the safety requirements. In assessing the safety of these facilities, there may be indications that safety criteria will not be met. In such circumstances, reasonably practicable measures are to be taken to upgrade the safety of the facility.

5.11 Although the focus of this Safety Guide is on radiological safety, non-radiological hazards (e.g. chemo-toxic, industrial) should also be addressed as specified in national requirements or as they may affect radiological safety (e.g. fires). Non-radiological hazards for which safety criteria exist can be assessed and modelled along with radiological hazards (e.g. hazards associated with the lifting and handling of waste containers).

SAFETY ASSESSMENT

5.12 The recommended approach to safety assessment includes the following key components [7, 26]:

21
(a) Specification of the context for the assessment;
(b) Description of the predisposal waste management facility or activity and the waste;
(c) Development and justification of scenarios;
(d) Formulation of models and identification of data needs;
(e) Performance of calculations;
(f) Evaluation of results to determine the acceptability of the level of safety achieved and the identification of necessary improvements and additional measures;
(g) Analysis of safety measures and engineering aspects, and comparison with safety criteria;
(h) Independent verification of the results;
(i) Review and modification of the assessment, if necessary (i.e. iteration).

These are described in more detail below.

Specification of the context for the assessment

5.13 The context for assessment involves the following key aspects: the purpose of the assessment, the philosophy underlying the assessment, the regulatory framework, the assessment end points, and the time frame for the assessment.

Description of the facility or activity and the waste;

5.14 It is important to recognize that the description of the facility is the basis from which the identification, characterization and quantification of the hazards may be determined (e.g. management of natural uranium versus irradiated materials). As described in [25], the description should include information about:

(a) Site conditions and the associated events, both natural and human induced, that could influence safety of the facility or activities;
(b) A description of the facilities and equipment used for processing and storing radioactive waste, including location in relation to collocated or nearby facilities or activities, equipment, relevant design features, and expected lifetime(s);
(c) A description of the activities for predisposal management of radioactive waste, including data on the radioactive waste streams (e.g., origin of the waste, volume and form of the waste, radionuclides of concern, radioactive content, presence of fissile materials, and other physical, chemical and pathogenic properties), including secondary waste streams and material that is cleared or discharged.
5.15 Quantities, chemical and radiological characteristics of waste are important in characterizing hazards associated with specific waste management activities, but these are facility-specific and thus should be considered within the framework of the decision making process, using a graded approach.

Development and justification of scenarios;

5.16 As described in [26], for the purpose of safety assessment, the term ‘scenario’ means the combination of a postulated or assumed set of conditions and events that can lead to human exposure or environmental contamination. Each scenario may represent or bound a range of situations reflecting certain conditions arising either during the normal operation of a facility or as a consequence of a postulated initiating event leading to a deviation from normal operation conditions.

5.17 A set of scenarios should be developed to cover a range of situations arising during normal operations and as a consequence of a postulated initiating event (e.g., human-induced, natural phenomena, or external) that could lead to a deviation from normal operation conditions.

5.18 The set of scenarios should take account of all relevant existing and potential hazards associated with the facility or activity, and their interrelation and evolution over the lifetime of the facility or activity consistent with the safety case and the context for the assessment. As basis of the development and justification of scenarios, a systematic approach to identification and screening of hazards and initiating events should be taken on the basis of the description of facility, the activities, and waste inventories.

5.19 The following steps should be applied in an iterative manner in order to identify scenarios for normal operation and anticipated operational occurrences and accident conditions that could lead to the exposure of workers and members of the public, or adversely impact the environment:

(a) Identification of hazards and initiating events: This should consider the inventory, activity, physical conditions and location of the waste and other radioactive material, together with any additional hazards (e.g., fissile, thermal, physical, reactive) arising from activities or processes for its management, and should identify where initiating events (e.g., operational, external or natural phenomena) could create the potential for causing harm to human health and/or the environment;

(b) Screening of hazards: The hazards and initiating events identified should be quantified and screened in order to direct efforts toward all significant and relevant hazards and initiating events for the facility or activity;

(c) GSG-3 identifies the general criteria and methodology that should be used to screen the hazards within facilities in general. For individual facilities the decision making process should identify the screening criteria specific to its operations and materials based on safety and environmental limits set down for that facility.
Identification of scenarios: The safety analysis should identify all relevant scenarios arising from either processes or accident situations in which the screened hazards could be realized. The general methodologies for identifying such scenarios are applicable for fuel cycle facilities. Greater attention should be paid however to the facilities and processes that involve significant chemical and physical processing, material transfer and human intervention.

The process of identification and screening of hazards should consider the complexity of the facility or activity, as well as the evolution of hazards and risks over the lifetime of the facility or activity, and should be consistent with the regulatory framework.

5.20 Appendix 3 provides examples of hazards associated with typical activities for predisposal management of radioactive waste in fuel cycle facilities. Appendix 4 provides examples of hazards associated with dedicated waste management facilities. Appendix 5 identifies hazards associated with, or that could affect waste management at typical fuel cycle facilities. These examples are not exhaustive; rather, they are intended to assist in the identification and subsequent assessment of hazards. GSG-3 (Annex 1) provides further guidance on the identification and assessment of hazards and potential initiating events relevant to typical activities for predisposal management of radioactive waste.

Formulation of models and identification of data needs

5.21 The broad range of methods and models required to assess the safety of activities for predisposal management of radioactive waste require a wide range of data inputs. Such data needs to be justified especially when considering the wide range of activities within fuel cycle facilities.

5.22 As predisposal management of radioactive waste within fuel cycle facilities is often a flow process with materials transferring directly from step to step it is important to recognize the interdependences of these when considering data and models and their inputs and outputs.

5.23 Some iteration of the above steps will be required to reflect progressive development of the safety assessment and evolution of the waste management process(es).

Performance of calculations and evaluation of results

5.24 Once the models have been parameterized they can be used for performing deterministic and/or probabilistic calculations for the assessment cases corresponding to the different scenarios.

5.25 The assessment cases should adequately address the appropriate scenarios using the conceptual models and site and facility or activity design information. A sufficient range of sensitivity and uncertainty analyses should be performed to contribute to understanding of the system and to identify parameter correlations that have not been treated in an appropriate way.
CENTRALIZED WASTE MANAGEMENT FACILITIES

5.26 In the case of centralized waste management facilities where one or more waste streams are received from separate sources the assessment should:

(a) Be carried out for all waste categories received and activities related to their specific processing
(b) Have regard to areas within the facility where there is a potential for individual wastes to interact
(c) Identify safety measures and engineering aspects for each waste category
(d) Review and consolidate the safety measures to determine the optimum safety measures and engineering aspects for the safety case for the overall facility. Optimization should ensure no conflicts or duplications occur.
(e) Identify consolidated operating limits and conditions as a basis for safe operation and to ensure compliance with the safety criteria.

6. General Safety considerations

INTRODUCTION

6.1 The steps involved in the predisposal management of radioactive waste are:

- waste generation and control
- processing
 - pretreatment
 - treatment
 - conditioning
- storage
- transport

6.2 At various steps compliance with waste acceptance requirements for the following step(s) has to be demonstrated. Therefore the waste has to be categorized and characterized throughout the steps of predisposal management of radioactive waste.
6.3 The ultimate goal of predisposal management of radioactive waste is to make the waste suitable for disposal (or for storage if no disposal facility is available). This implies that the final waste form has to comply with the waste acceptance requirements of the disposal facility.

6.4 Management options such as recycling, reuse, clearance and the control of discharges, and authorized disposal, in compliance with the conditions and criteria established by the regulatory body, should be used as far as practicable. The limitations and controls for clearance and the control of discharge activities should be set by the regulatory body [17, 18].

6.5 Radioactive waste is handled and transported between and within the various steps in predisposal management of radioactive waste. Requirements and guidance on transport of radioactive waste can be found in SSR-6 [12] and TS-G-1.1 [30].

WASTE GENERATION AND CONTROL

<table>
<thead>
<tr>
<th>Requirement 8 (GSR Part 5, Ref. [14]): Radioactive waste generation and control</th>
</tr>
</thead>
<tbody>
<tr>
<td>All radioactive waste shall be identified and controlled. Radioactive waste arisings shall be kept to the minimum practicable.</td>
</tr>
</tbody>
</table>

6.6 During the design of the nuclear fuel cycle facility, consideration should be given to operational features for waste generation and control (NSR-5, SSG-5, SSG-6, and SSG-7) [6, 27, 28, 29], including the following aspects:

(a) The careful selection of materials, processes and structures, systems and components for the facility;

(b) The selection of design options that favour waste minimization when the facility is eventually decommissioned;

(c) The use of effective and reliable techniques and equipment;

(d) The containment and packaging of radioactive material to maintain its integrity;

(e) Adequate zoning to prevent contamination;

(f) The decontamination of zones and equipment and the prevention of the spread of contamination.

6.7 The principle of waste generation and control should also be a factor for consideration in the selection of approaches to storage and processing, in order to minimize the generation of secondary radioactive waste. Examples of processing steps for which this principle should be considered include the selection of conditioning processes and the testing programme invoked to verify treatment and conditioning processes. For a conditioning process in which components become contaminated, equipment of proven longevity should be used. For the qualification of a conditioning process the
programme should be designed in such a way that the number of test specimens using actual radioactive waste is minimized.

6.8 Pretreatment operations including segregation should be carried out so as to minimize the amount of radioactive waste to be further treated, conditioned, stored and disposed of. Decontamination and/or a sufficiently long period of storage to allow for radioactive decay should be used where appropriate to enable regulatory control to be removed from the waste.

CHARACTERIZATION AND CLASSIFICATION OF WASTE

| Requirement 9 (GSR Part 5, Ref. [4]): Characterization and classification of radioactive waste |
| At various steps in the predisposal management of radioactive waste, the radioactive waste shall be characterized and classified in accordance with requirements established or approved by the regulatory body. |

6.9 Radioactive waste is required to be characterized at the various stages in its predisposal management to obtain information on its properties for use in controlling the quality of the products, verifying the process and thus facilitating the subsequent steps for safely processing and finally disposing of the waste.

6.10 For the purposes of determining arrangements for the handling, processing, and storage of radioactive waste, consideration should be given to:

(a) Its origin;
(b) Criticality risk [32];
(c) Its radiological properties (e.g. half-life, activity and concentration of nuclides, dose rates);
(d) Other physical properties (e.g. size and mass, compactibility, solubility);
(e) Chemical properties (e.g. composition of raw waste, water content, residual moisture, corrosion resistance, combustibility, gas generation properties, chemotoxicity);
(f) Biological properties (e.g. biological hazards);
(g) Intended methods of processing, storage and disposal

6.11 The characterization process should include the measurement of physical and chemical parameters, the identification of radionuclides and the measurement of activity content. Such measurements are necessary for monitoring the history of the radioactive waste or waste packages through the stages of processing, storage and disposal and for maintaining records for the future.
6.12 The data requirements for characterization and methods for collecting data will differ depending on the type and form of the radioactive waste. When waste streams are processed, characterization may be performed by sampling and analysing the chemical, physical and radiological properties of the waste. The quality of waste packages may be investigated by non-destructive and, infrequently, also by destructive methods. However, it may be possible to apply indirect methods of characterization based on process control and process knowledge, including modelling, instead of or in addition to sampling and the inspection of waste packages in order to avoid undue occupational exposure. The methods of characterization in the processing of the waste should be approved by the regulatory body in the authorization process.

6.13 An important objective of the predisposal management of radioactive waste is to produce waste packages that can be handled, transported, stored and disposed of safely. In particular, radioactive waste should be conditioned to meet the acceptance requirements for its disposal. In order to provide reasonable assurance that the conditioned waste can be accepted for disposal, although there may not yet be any specific requirements, options for the future management of radioactive waste and the associated waste acceptance requirements should be anticipated as far as possible. The waste acceptance requirements may be met by providing an overpack that is tailored to the specific conditions at the repository site and to the characteristics of the radioactive waste and the engineered components of the disposal facility.

6.14 To ensure the acceptance of waste packages for disposal, a programme should be established to develop a process for conditioning that is approved by the regulatory body. The features adopted for waste characterization and process control should provide confidence that the properties of waste packages will be ensured.

6.15 The categorization and classification of radioactive waste assists in the development of management strategies and in the operational management of the waste. Segregation of waste with different properties will also be helpful at any stage between the arising of the raw waste and its conditioning, storage, transport and disposal. To make the appropriate segregation of waste, it will be necessary to know its properties and, hence, it will be necessary to characterize the waste at various stages of its processing. Documented procedures should be followed for the characterization of radioactive waste and its segregation, and for assigning the waste to a particular class.

6.16 Details of the purpose, methods and approaches to the classification of radioactive waste are provided in GSG-1 [9]; Annex III of which also provides information on origin and types of radioactive waste, including waste from nuclear power production. It should be noted that the classification scheme is based on the long term management (disposal) of the radioactive waste.
6.17 It should be borne in mind that most fuel cycle radioactive waste contains alpha emitting radionuclides. Inflammable, pyrophoric, corrosive or other hazardous materials should also be given special attention. Care should be taken to avoid mixing waste of these types.

6.18 Liquid radioactive waste, which is mainly water based, should be classified for processing purposes according to its activity concentration levels and its content of chemical substances. For instance, radioactive waste containing organic matter may need special treatment. Non-aqueous radioactive waste such as oil should be segregated for separate treatment. To the extent possible, liquid waste should be processed and conditioned (e.g., through immobilization, etc.) to promote safe handling and disposal.

6.19 Solid radioactive waste should be classified according to its radionuclide content (type and half-life) and activity concentration; for instance, sludge, cartridge filters, contaminated equipment and components, ventilation filters and miscellaneous items (such as paper, plastic, towels) may be segregated in accordance with the type of treatment and conditioning process, such as compaction, incineration or immobilization.

6.20 The segregation of radioactive waste into appropriate categories should be carried out as near to the point of generation as practicable. The waste should be segregated in accordance with written procedures.

PROCESSING OF RADIOACTIVE WASTE

<table>
<thead>
<tr>
<th>Requirement 10 (GSR Part 5, Ref. [4]): Processing of radioactive waste</th>
</tr>
</thead>
</table>

Radioactive material for which no further use is foreseen, and with characteristics that make it unsuitable for authorized discharge, authorized use or clearance from regulatory control, shall be processed as radioactive waste. The processing of radioactive waste shall be based on appropriate consideration of the characteristics of the waste and of the demands imposed by the different steps in its management (pretreatment, treatment, conditioning, transport, storage and disposal). Waste packages shall be designed and produced so that the radioactive material is appropriately contained both during normal operation and in accident conditions that could occur in the handling, storage, transport and disposal of waste.

Introduction

6.21 The predisposal management of radioactive waste may include one or more processing steps (e.g. pretreatment, treatment and conditioning). These steps may take place in stationary or mobile facilities. The handling, storage and transport of the waste will be necessary within, between and after such steps.

6.22 The objective of predisposal management of radioactive waste is to produce packages of conditioned radioactive waste suitable for safe handling, transport, storage and disposal. If no disposal facility is available, assumptions should be made on the requirements for the acceptance of the
radioactive waste in the future at a repository in order to provide guidance for its predisposal management.

6.23 Radioactive waste should be processed as early as practicable in order to convert it into a passively safe state and to prevent its dispersal during storage and disposal, which may include provisions for long term storage.

Pretreatment

6.24 The processing of radioactive waste will include pretreatment operations such as waste collection, segregation, chemical adjustment and decontamination. Pretreatment may result in a reduction in the amount of waste needing further processing, storage and disposal. Actions can be performed to adjust the characteristics of the waste, to make it more amenable to further processing, and to reduce or eliminate certain hazards posed by the waste owing to its radiological, physical and chemical properties.

6.25 The first operation in the pretreatment of radioactive waste is to collect waste radioactive materials, segregating them as necessary on the basis of their radiological, physical and chemical properties. Radioactive waste containing predominantly short lived radionuclides should not be mixed with long lived waste. In the segregation of waste it should also be taken into account whether regulatory control can be removed from the waste or whether it can be recycled or discharged, either directly or after allowing for a decay period.

6.26 To facilitate further treatment and enhance safety, solid waste should be segregated according to the facility specific waste management programme and the available facilities. Segregation is based on consideration of the following waste properties:

(a) Combustible or non-combustible, if incineration is a viable option;
(b) Compressible or non-compressible, if compaction is a viable option;
(c) Metallic or non-metallic, if melting is a viable option;
(d) Fixed or non-fixed surface contamination, if decontamination is a viable option.

6.27 Special care should be taken in segregating materials and objects that are fissile, pyrophoric, explosive, chemically reactive or otherwise hazardous, or that contain free liquids or pressurized gases.

6.28 A number of decontamination processes remove surface contamination using a combination of mechanical, chemical and electrochemical methods. Care should be taken to limit the amount of secondary waste generated and to ensure that the characteristics of the secondary waste are compatible with subsequent steps in the waste management process.
6.29 Mixing waste streams should be limited to those streams that are radiologically and chemically compatible. If the mixing of chemically different waste streams is considered, an evaluation should be made of the chemical reactions that could occur in order to avoid uncontrolled or unexpected reactions, especially the unplanned release of volatile radionuclides or radioactive aerosols. Organic liquid waste needs different treatment owing to its chemical nature and should be segregated and kept separate from aqueous waste streams. Organic liquid waste may also be flammable and its collection and storage should incorporate provisions for adequate ventilation and fire protection.

Treatment

6.30 The treatment of radioactive waste may include:

(a) The reduction in volume of the waste (by incineration of combustible waste, compaction of solid waste and segmentation or disassembly of bulky waste components or equipment);

(b) The removal of radionuclides (by evaporation or ion exchange for liquid waste streams and filtration of gaseous waste streams);

(c) Change of form or composition (by chemical processes such as precipitation, flocculation and acid digestion as well as chemical and thermal oxidation);

(d) Change of the properties of the waste (by solidification, embedding or encapsulation; common immobilization matrices include cement, bitumen and glass).

Solid waste

6.31 Solid radioactive waste may be heterogeneous. Special consideration should be given to representative sampling before processing so as to confirm compatibility with the intended process, and appropriate arrangements should be made for this as far as practicable. Arrangements should also be made for systematic control of the final products to verify compliance with established requirements and recommendations.

6.32 A great number of processes are available for producing acceptable waste packages. Such processes should be selected on the basis of the characteristics of the waste concerned. If possible, processes with high volume reduction factors should be applied with the use of proven techniques such as compaction or incineration.

6.33 Incineration of combustible solid waste normally achieves the highest volume reduction as well as yielding a stable waste form. After combustion, radionuclides from the waste will be distributed between the ash, the products from cleaning the exhaust gases and the stack discharges. It should be noted, that incineration will result in the increase of the activity concentration levels which
might result in a change of the waste class. The distribution will depend on the design and operating parameters of the incinerator and the nature of the radionuclides in the waste. Incineration is also an advantageous technique for treating radioactive organic liquids because the products of complete combustion are ash, carbon dioxide and water. Other constituents in the waste may yield acid gases and corrosive combustion products, and the effects of corrosion of the incinerator’s components and of acid releases to the atmosphere should therefore be considered. Off-gas scrubbing to prevent the discharge of radioactive and non-radioactive hazardous materials may be necessary and should be considered. Attention should be paid to radionuclides accumulating and concentration in residues of the gas cleaning system and those remaining in the ash, and to their further conditioning.

6.34 Releases of radionuclides to the environment are largely determined by the operational conditions of the incinerator, in particular through control of the temperature and the types and amounts of waste incinerated and its radionuclide content. For incinerators processing significant amounts of radioactive waste, the operator should monitor the radionuclides in the stack discharge by appropriate measures to ensure that the concentrations and amounts discharged are within the limits specified by the regulatory body and are consistent with the parameters modelled in the safety assessment. The products of incineration can include acids, polychlorinated biphenyls and various other materials presenting non-radiological hazards, which should be taken into account.

6.35 Compaction is a suitable method for reducing the volume of certain types of waste. This may include the compaction of ashes originating from incineration. The characteristics of the material to be compacted and the desired volume reduction should be well defined and controlled. Consequences of compaction that should be given consideration in selecting or designing and operating a compactor include the following:

- (a) The possible release of volatile radionuclides and other airborne radioactive contaminants;
- (b) The possible release of contaminated liquid during compaction;
- (c) The chemical reactivity of the material during and after compaction;
- (d) The potential fire and explosion hazards due to pyrophoric or explosive materials or pressurized components.

6.36 Segmentation or disassembly and other size reduction techniques may be used before conditioning waste that is bulky or oversize in relation to the intended processing (e.g. worn out components or structures). Processes to achieve this typically use cutters with high temperature flames, various sawing methods, hydraulic shearing, abrasive cutting and plasma arc cutting. Means of preventing the spread of particulate contamination should be considered in the choice of method and in the operation of the equipment.
6.37 For non-combustible and non-compressible solid waste, for which delay and decay or decontamination is not a viable option, direct conditioning without prior treatment should be considered. Melting metal scrap, with resultant homogenization of the radioactive material and its accumulation in the slag, may be considered as a means of achieving authorized reuse or removal of regulatory control.

Liquid waste and discharges

6.38 Methods for the treatment of aqueous waste include evaporation, chemical precipitation, ion exchange, filtration, centrifugation, ultrafiltration, incineration and reverse osmosis. In each case, process limitations due to corrosion, scaling, foaming and the risk of fire or explosion in the presence of organic material should be carefully considered, especially with regard to the safety implications of operations and maintenance.

6.39 If the waste contains fissile material, the potential for criticality should be evaluated and eliminated to the extent practicable by means of design features and administrative safety measures [32]. Conditions of optimum moderation and reflection should be considered in the determination of safe configurations of radioactive waste and in the development of operating procedures.

6.40 Where appropriate spent ion exchange resins are usually flushed out as slurry and subsequently managed as liquid waste, although some operators retain the resins as a dry solid. When resins are flushed out as slurry, care should be taken to prevent blockages of the flow as these may cause radiation hot spots and necessitate special maintenance. Special care should also be taken with their prolonged storage while awaiting conditioning, because of the potential for radiolysis or chemical reactions generating combustible gases or causing physical degradation or exothermic reactions.

Liquid waste and discharges

6.41 Liquids for discharge may be produced as a consequence of the treatment of waste. To the extent possible, liquid waste should be characterized on the basis of its radiological and chemical properties to facilitate collection and segregation. With proper characterization it may be possible to discharge the waste within authorized limits, provided that the non-radiological characteristics of the waste are appropriate.

6.42 All discharged liquids should be readily dispersible in water. If the liquid contains suspended materials, it may need to be filtered prior to discharge. Waste that is immiscible with water should be completely excluded from discharge. Acidic or alkaline liquids should be neutralized prior to discharge. If the waste also contains toxic or other chemicals that could adversely affect the environment or the treatment of sewage, the waste should be treated prior to discharge in accordance with the regulations in respect of health and safety and protection of the environment.
Gaseous waste and discharges

6.43 In the operation of treatment systems for gaseous radioactive waste, consideration should be given to: the amount of gas to be treated; the activity; the radionuclides contained in the gas; the concentrations of particulates; the chemical composition; the humidity; the toxicity; and the possible presence of corrosive or explosive substances.

6.44 Radioactive particulates and aerosols in gaseous effluents may be removed by filtration using high efficiency particulate air (HEPA) filters. Iodine and noble gases can be removed by filters or sorption beds charged with activated charcoal. The use of scrubbers for the removal of gaseous chemicals, particulates and aerosols from off-gases should be considered. Where required by the regulatory body, or if the reliability of the system is fundamental to the achievement of safety, redundant systems such as two filters in sequence should be used in case one fails. Additional components of the off-gas system that should be considered for detecting problems include those that ensure proper operation of the filters, such as pre-filters or roughing filters, and temperature and humidity control systems, as well as monitoring equipment such as gauges that show pressure differentials.

Conditioning

6.45 Conditioning of radioactive waste consists of those operations that produce a waste package suitable for safe handling, transport, storage and disposal. Conditioning may include the immobilization of liquid waste or dispersible waste, the enclosure of the waste in a container and the provision of an overpack (as necessary).

6.46 Waste packages produced by conditioning should satisfy the respective acceptance criteria. Therefore, the regulatory body and organizations operating or planning to operate transport services and storage and disposal facilities should be consulted in deciding which types of pretreatment, treatment and conditioning will be necessary.

6.47 Liquid waste is often converted into a solid form by solidifying it in a suitable matrix such as cement, bitumen or polymer for low- and intermediate-level waste or glass for high-level waste. Solidification may also be achieved without a matrix material, for example by drying. The product is then enclosed in a container.

6.48 To the extent practicable the solidification process for liquid waste should produce a waste form with the following characteristics and properties:

(a) Compatibility (physical and chemical) of the waste, any matrix materials and the container;

(b) Homogeneity;
(c) Low voidage;
(d) Low permeability and leachability;
(e) Chemical, thermal, structural, mechanical and radiation stability for the required period of time;
(f) Resistance to chemical substances and micro-organisms.

6.49 Solid waste should be considered on a case by case basis. The characteristics of the waste form as listed above apply for many types of solid waste. Some of the characteristics (in particular homogeneity and low voidage) do not apply for certain types of solid waste.

6.50 It should be taken into account that certain metals, such as aluminium, magnesium and zirconium, could react with, for example, the alkaline water of cement slurry or water diffused from a concrete matrix, to produce hydrogen. Chelating agents, organic liquids or oil and salt content in liquid waste may also be of concern in the conditioning process.

6.51 The waste and its container should be compatible. Depending on the waste characteristics and the method of handling, transport and storage, the container may also need to provide shielding for direct radiation. In selecting materials for the container and its outer surface finish, consideration should be given to the ease of decontamination. If a container is not initially designed to meet the relevant acceptance criteria for transport, storage or disposal, an additional container or an overpack will be necessary to meet the acceptance criteria. Care should be taken to consider the compatibility of the waste package and the overpack with respect to the waste acceptance criteria and transport requirements.

6.52 If there may be a significant delay before an acceptable disposal route becomes available, the container should provide integrity during the anticipated storage period prior to disposal and should be capable of allowing for:

(a) Retrieval at the end of the storage period;
(b) Enclosure in an overpack, if necessary;
(c) Transport to and handling at a disposal facility;
(d) Meeting acceptance requirements of the disposal facility.

STORAGE OF RADIOACTIVE WASTE

<table>
<thead>
<tr>
<th>Requirement 11 (GSR Part 5, Ref. [4]): Storage of radioactive waste</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waste shall be stored in such a manner that it can be inspected, monitored, retrieved and preserved in a condition suitable for its subsequent management. Due account shall be taken of the expected period of storage, and, to the extent possible, passive safety features shall be applied. For long term storage in particular, measures shall be taken to</td>
</tr>
</tbody>
</table>
prevent degradation of the waste containment.

6.53 Guidance for the storage of radioactive waste and for the storage of spent fuel is dealt with extensively in WS-G-6.1 [10] and SSG-15 [11], respectively.

6.54 Special attention may need to be given to storage of fissile materials, to avoid storage configurations which could lead to criticality concerns.

RADIOACTIVE WASTE ACCEPTANCE CRITERIA

Requirement 12 (GSR Part 5, Ref. [4]): Radioactive waste acceptance criteria

| Waste packages and unpackaged waste that are accepted for processing, storage and/or disposal shall conform to criteria that are consistent with the safety case. |

6.55 Criteria are to be developed for the acceptance of radioactive waste in the facilities for predisposal management of radioactive waste. Account should be taken of all relevant operational limits and conditions of the facility for predisposal management of radioactive waste (consistent with the safety case) and also of the future disposal facility. In fact, an important objective of the predisposal management of radioactive waste is to produce waste packages that can be handled, transported, stored and disposed of safely. In particular, waste should be conditioned to meet the acceptance criteria for its disposal. In order to provide reasonable assurance that the conditioned waste can be accepted for disposal, although there may not yet be any specific requirements, options for the future management of radioactive waste and the associated waste acceptance criteria should be anticipated as far as possible. The waste acceptance criteria may be met by providing an overpack that is tailored to the specific conditions at the repository site and to the characteristics of the waste and the engineered components of the disposal facility. Appendix 6 provides a listing of the typical properties and characteristics that should be considered for waste packages.

6.56 To ensure the acceptance of waste packages for disposal, a programme should be established, as an element of the management system, to develop a process for conditioning that is approved by the regulatory body. In addition, a programme for quality assurance and control of waste packages should be developed and included in the management system. Subsequent to approval by the regulatory body, this programme should be implemented as a measure to confirm the fulfilment of the waste acceptance requirements of the disposal facility.

6.57 The operator of the facility for predisposal management of radioactive waste should ensure that the radioactive waste accepted in the facility (and installations) complies with the set criteria. Procedures for acceptance should be included in the management system.

6.58 Identification of waste acceptance criteria enable the effective interlinking of facilities and processes where material is transferring, being held for storage or transported to a disposal facility.
6.59 Adequate techniques should be in place to allow both the facility for predisposal management of radioactive waste and the future disposal facility to identify the characteristics of the material to demonstrate that it is consistent with the safety case and that it meets the waste acceptance criteria.

LIFETIME SAFETY CONSIDERATIONS

Siting and design

<table>
<thead>
<tr>
<th>Requirement 17 (GSR Part 5, Ref. [4]): Location and design of facilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predisposal radioactive waste management facilities shall be located and designed so as to ensure safety for the expected operating lifetime under both normal and possible accident conditions, and for their decommissioning.</td>
</tr>
</tbody>
</table>

6.60 Criteria for siting and methods that could be used in a graded approach in the siting of nuclear installations are dealt with in NS-R-3 [33], SSG-9 [34], SSG-18 [35], SSG-21 [36] and DS433 [37].

6.61 Facilities for the management of radioactive waste on any particular site should be located in the same area, to the extent practicable, to reduce the need for the transport of waste between locations for processing and for storage.

6.62 Facilities for predisposal management of radioactive waste should be designed:

(a) To prevent against dispersion of radioactive material (confinement, cooling, measures against explosive accumulation of gas)

(b) To prevent against external exposure (shielding)

(c) To prevent against criticality

The design assessment should consider internal and external hazards (Annex 1 of [6]).

6.63 In the design of the fuel cycle facility and waste management facility, due consideration should be given to the need for:

(a) The control of access to areas for waste processing and storage and the control of movement between radiation zones and contamination zones;

(b) The retrieval of stored waste (including waste generated during operation);

(c) Waste characterization and inventory control;

(d) The inspection of the waste and its containment;

(e) Dealing with waste and waste packages that do not meet specifications;

(f) The control of liquid and gaseous effluents;

(g) Managing waste giving rise to non-radiological hazards;

(h) Maintenance work and eventual decommissioning;
6.64 Measures considered in the design for the management of gaseous and liquid waste and effluents should include the following:

(a) Provision for radioactive gases to be channelled through proper ducting as appropriate and brought to monitored release point(s);

(b) Provision of means, such as stacks for the release of gaseous low level radioactive waste, and of methods for sampling and monitoring those releases.

(a) Measures considered in the design for the management of liquid radioactive waste should include the following:

(b) Collection of radioactive liquid effluents to a common point such as a holding tank;

(c) The potential for re-concentration downstream in the environment of some released radionuclides in relation to the collection of liquid radioactive waste with low levels of activity and the methods of monitoring such releases;

(d) The management and control of liquid radioactive waste with higher levels of activity;

(e) Provisions for decay devices to minimize releases of radioactive material;

(f) Provisions for sampling from and monitoring retention tanks prior to the release of liquid content, preferably at the point of release;

(g) Provisions for treating liquid radioactive waste either for reuse (e.g. treatment using resins) or because the activity levels are too high for their release to the environment.

6.65 Measures considered in the design for the management of solid radioactive waste should include, when appropriate, the following:

(a) Provisions for segregating waste by type (amount, form, volume, isotopic composition and activity concentration) or by area of origin;

(b) The packaging, handling and storage of solid low level and very low level radioactive waste, such as contaminated cleaning equipment, clothing, paper and tools;

(c) The packaging, handling and storage of solid intermediate level radioactive waste, such as waste arising from ion exchange resins, ventilation filters and charcoal beds;

(d) Areas and tools for handling and loading waste;

(e) Equipment and tools for radiation protection;

(f) Provisions as necessary for storing resins and dehydrating liquid waste;
(g) Provisions for filtration in liquid waste collection lines to prevent the release of solids;

(h) Provisions for ensuring that the removal of radioactive material within authorized practices from any further regulatory control and the control of discharges are within authorized limits.

6.66 Facilities should be designed to prevent material interactions that may compromise the containment of the waste or safety at the facility.

6.67 The predisposal management of radioactive waste should take account of potential interactions between radioactive and non-radioactive constituents.

6.68 Depending on the characteristics of waste concerned protection may be provided solely by a container or by a container supplemented by the safety systems of the facility, such as those for heat removal (either passive or active).

6.69 For the conditioning of waste all relevant characteristics of the waste form need to be considered and provided for in the design of the waste package. The waste package should provide adequate containment, shielding and heat removal properties.

6.70 The design and operation should be carried out in such a way as to ensure subcriticality in both operational states and under accident conditions by means of safe geometrical configurations, limitations on concentrations and inventories of fissile material or the use of neutron poisons. Conditions of optimum moderation and reflection should be considered in the determination of safe configurations of radioactive waste and the development of operating procedures. An appropriate limiting neutron multiplication factor, with suitable safety factors for mass, concentration and other characteristics taken into account, should be selected in the design for the purpose of ensuring criticality safety, depending upon the conditions mentioned above. Additional organizational and administrative arrangements that may be necessary in the operation of such a facility to ensure subcritical conditions should be considered [32].

6.71 The design of a facility for the predisposal management of high-level (heat generating) radioactive waste should incorporate systems (e.g. a system for monitoring and controlling the temperature) that are capable of maintaining the temperature of the waste within acceptable limits in all stages of predisposal management of radioactive waste, both in operational states (e.g., normal operation and anticipated operational occurrences) and under accident conditions (e.g., design basis accidents and design extension conditions). Such temperature limits should be based on the properties of the waste and waste packages, with account taken of the material properties of the container, the containment structures and the waste form in all steps of management, including storage. To the maximum extent practicable, the cooling systems for storage facilities for conditioned high-level
waste should be passive and should need minimal maintenance. If the forced circulation of coolant is used, the system should be highly reliable. Examples of features that enhance the reliability of the cooling system are the capability of dealing with the settling of solids and with build-up on surfaces that affects the efficiency of heat removal. The storage facility itself should be designed to be capable of experiencing temporary loss of cooling events without damage to the stored waste. In addition, means of mitigation should be put in place to deal with such contingencies.

Construction and commissioning

Requirement 18 (GSR Part 5, Ref. [4]): Construction and commissioning of the facilities

Predisposal radioactive waste management facilities shall be constructed in accordance with the design as described in the safety case and approved by the regulatory body. Commissioning of the facility shall be carried out to verify that the equipment, structures, systems and components, and the facility as a whole, perform as planned.

6.72 Guidance for the construction of nuclear installations is dealt with in DS441 [38].

6.73 For modular storage systems, most of the commissioning will have been completed on loading of the first storage module. Some of the commissioning processes may become a part of regular operation as new modules are brought into service. However, a change in module design may require some of the commissioning steps to be repeated for the new design [11].

Facility operation

Requirement 19 (GSR Part 5, Ref. [4]): Facility operation

Predisposal radioactive waste management facilities shall be operated in accordance with national regulations and with the conditions imposed by the regulatory body. Operations shall be based on documented procedures. Due consideration shall be given to the maintenance of the facility to ensure its safe performance. Emergency preparedness and response plans, if developed by the operator, are subject to the approval of the regulatory body.

6.74 Instructions and procedures should be prepared for normal operations of the facility, anticipated operational occurrences and design basis accident conditions. Instructions and procedures should be prepared so that the designated responsible person can readily perform each action in the proper sequence. Responsibilities for approval of any deviations from operating procedures that may be necessary for operational reasons should be clearly specified (GS-G-3.3) [23].

6.75 The operating organization should ensure that operating procedures relating to the maintaining of subcriticality are subjected to rigorous review and compared with the safety requirements of the design. This may include confirmatory analysis and review by the regulatory body. Some of the factors that should be considered in this review include:

(a) The nature of the waste to be stored;
(b) Geometries necessary to ensure subcriticality;
(c) Conditions of optimum moderation and reflection
(d) Waste form and waste packages;
(e) Handling operations;
(f) The potential for abnormal operation;
(g) Dependence of subcriticality on neutron absorbers.

6.76 Safety considerations that should be taken into account in the development of operating procedures and contingency and emergency arrangements are addressed in GS-G-2.1 [39]. It should be noted that many events would be addressed either as anticipated operational occurrences or as design basis accidents. However, some of these events could also lead to severe accidents, which are beyond the design basis. Whilst the probability of such design extension conditions occurring is extremely low, in the preparation of operating procedures and contingency plans the operating organization should consider events such as the following:

(a) Failure of handling systems, including severe crane failure, dropping of loads, falling waste packages;
(b) Loss of safety related facility process systems such as supplies of electricity, process water, compressed air and ventilation;
(c) Explosions (e.g., due to the build-up of gases generated by radiolysis);
(d) Fires leading to the damage of items important to safety (to reduce the risk of fire, the amount of combustible material or waste should be controlled, as should be the amount of other flammable materials);
(e) External natural hazards such as extreme weather conditions and earthquakes;
(f) External human induced hazards (airplane crash, sabotage, and other malicious acts).

6.77 Operating experience and events at the facility and reported by similar facilities should be collected, screened, analysed and/or reviewed in a systematic way. Conclusions should be drawn and implemented by means of an appropriate feedback procedure. Any new standards, regulations or regulatory guidance should also be reviewed to check for their applicability for safety at the facility. This feedback should be taken for both design and operation.

Operational limits and conditions

6.78 Operational limits and conditions are developed on the basis of the facility design, its safety assessment and the result of its commissioning, and usually comprise the minimum staffing requested for safety during operational stage
Maintenance

6.79 In general, the maintenance schedule should take into account:

(a) analysis of maintenance requirements on the basis of previous experience or other applicable data (such as manufacturers’ recommendations);
(b) work planning in relation to the availability of skilled personnel, tools and materials (including spare items);
(c) the monitoring programme for radiation protection and industrial safety;
(d) the potential for a loss of containment;
(e) impact to operating facilities/maintenance.

6.80 Suitably qualified and experienced operating personnel should be deployed in the approval and implementation of the maintenance, inspection and testing programme and in the approval of associated working procedures and acceptance criteria.

Radiation protection programme

6.81 An operational radiation protection programme should be put in place that ensures that areas of the facility are classified according to the radiation levels and that access control is in place in accordance with the level of classification. It should cover the monitoring of radiation levels in the facility and should include provision to ensure that personnel working in the facility are provided with appropriate dosimetry. A programme of work planning should also be put in place to ensure that radiation exposure is kept as low as reasonably achievable.

Emergency planning and response

6.82 Emergency response procedures should be documented, made available to the personnel concerned and kept up to date. The need for exercises should be assessed. If there is such a need, exercises should be held periodically to test the emergency response plan and the degree of preparedness of the personnel. Inspections should be performed regularly to ascertain whether equipment and other resources necessary in the event of an emergency are available and in working order.

Decommissioning

Requirement 20 (GSR Part 5, Ref. [4]): Shutdown and decommissioning of facilities

The operator shall develop, in the design stage, an initial plan for the shutdown and decommissioning of the predisposal radioactive waste management facility and shall periodically update it throughout the operational period. The decommissioning of the facility shall be carried out on the basis of the final decommissioning plan, as approved by the regulatory body. In addition, assurance shall be provided that sufficient funds will be available to carry out shutdown and decommissioning.
The key elements that should be considered for the decommissioning of facilities for the predisposal management of radioactive waste, as specified in WS-R-5 [21], include:

(a) The selection of a decommissioning option in which the radionuclides in the secondary waste, technical factors, costs, schedules and institutional factors are taken into account;

(b) The development of a decommissioning plan;

(c) The specification of the critical tasks involved in their decommissioning; in particular decontamination, dismantling, demolition, surveillance and conducting a final radiological survey;

(d) The management functions important for their decommissioning, such as training, organizational control, radiological monitoring, planning and the control of waste management, nuclear security, safeguards and quality assurance.

An initial version of the decommissioning plan should be prepared during the design of the facility in accordance with requirements and recommendations on decommissioning (WS-R-5, WS-G-2.4) [21, 22].

During the operation of the facility, the initial decommissioning plan should be periodically reviewed and updated and should be made more comprehensive with respect to:

(a) Technological developments in decommissioning;

(b) Possible natural and human induced hazards of external events;

(c) Modifications to systems and structures affecting the decommissioning plan;

(d) Amendments to regulations and changes in government policy;

(e) Cost estimates and financial provisions.

A comprehensive decommissioning strategy should be developed for sites also having other facilities to ensure that interdependences are taken into account in the planning for individual facilities (WS-G-2.4) [22].
APPENDIX 1. FACILITY SPECIFIC WASTE MANAGEMENT PROGRAMME

The content of a facility specific waste management programme should include, as appropriate:

(a) The description of the processes in which the radioactive waste is generated by the facility;
(b) A description of the radioactive waste streams and the efforts to avoid and minimize them;
(c) A comprehensive list of the current and anticipated waste arisings and inventories for the facility;
(d) Definition of the facility specific waste management principles and objectives;
(e) Identification of waste management options and associated steps as well as interdependences between waste management steps;
(f) Justification of the selection of appropriate management options based on the above and international good practices;
(g) Demonstration that the facility specific waste management programme is compatible with national policy and strategy;
(h) Demonstration, if necessary, of how the safety case is affected by the waste management programme, e.g. a modification of the plan to incorporate longer storage than the building was originally designed for would impact the safety case.

The programme should include provisions for:

(a) Keeping the generation of radioactive waste to the minimum practicable, in terms of type, activity and volume, by using suitable technologies;
(b) Possible reuse and recycling of materials;
(c) Appropriate classification and segregation of waste, and maintenance of an accurate inventory for each radioactive waste stream, with account taken of the available options for clearance and disposal;
(d) Collection, characterization and safe storage of radioactive waste, and an additional reserve storage capacity;
(e) Adequate storage capacity for the radioactive waste expected to be generated (conditioned and unconditioned);
(f) Ensuring that the radioactive waste can be retrieved at the end of the anticipated storage period
(g) Techniques and suitable procedures available for the retrieval of stored radioactive waste;
(h) Treating, retreating and conditioning radioactive waste to comply with waste acceptance requirements and to ensure safe storage and disposal;
(i) Safe handling and transport of radioactive waste;
(j) Adequate control of discharges of effluents to the environment;
(k) Monitoring of sources (of effluent discharges) and the environment, for the demonstration of regulatory compliance;

(l) Maintaining facilities and equipment for the collection, processing and storage of waste to ensure safe and reliable operation;

(m) Monitoring the status of the containment for the radioactive waste in the storage location;

(n) Monitoring changes in the characteristics of radioactive waste by means of inspection and regular analysis, in particular, if storage is continued for extended periods;

(o) Initiating, as necessary, research and development activities to improve existing methods for processing radioactive waste or to develop new

(p) Recording and reporting of a systematic evaluation of operating experience and events at the facility;

(q) Adoption and implementation of corrective actions on the basis of the results of monitoring and operating experience feedback;

(r) Emergency preparedness and response.
APPENDIX 2: EXAMPLES OF HAZARDS ASSOCIATED WITH WASTE MANAGEMENT ACTIVITIES AT FUEL CYCLE FACILITIES

<table>
<thead>
<tr>
<th>Waste management activities</th>
<th>Waste materials</th>
<th>Characteristics</th>
<th>Hazards (radiological)</th>
<th>Hazards (non-radiological)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uranium conversion (natural):</td>
<td>UOC insolubles</td>
<td>U and NORM concentration</td>
<td>Alpha bearing materials</td>
<td>Heavy metal toxicity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U compound properties</td>
<td>Radiation dose</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Impurities (e.g. V, Cr)</td>
<td>(internal/external)</td>
<td></td>
</tr>
<tr>
<td>FLowride related gaseous scrubbing particulate scrubbing</td>
<td>Uranium excess / Fluoride ash</td>
<td>Concentration of short lived daughters (Th, Pa)</td>
<td>Alpha bearing materials Radiation dose</td>
<td>Fire</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U Concentration</td>
<td>(internal/external)</td>
<td>Fluoride toxicity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uranium compound properties</td>
<td></td>
<td>(acute/chronic)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fluorine content</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Particulate size and dispersibility</td>
<td>Additional beta dose rates due to concentration of short lived radionuclides</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Temperature and thermal capacity</td>
<td></td>
<td>Heavy metal toxicity</td>
</tr>
<tr>
<td></td>
<td>KOH liquors including test liquors</td>
<td>Liquids containing uranium and fluorides and alkali chemicals</td>
<td>Uranium impact on environment</td>
<td>Thermal burns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low uranium concentration</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbonate and hydroxide liquors from solvent washing including test liquors</td>
<td>Contamination with solvent</td>
<td>Uranium and daughter product impact on environment</td>
<td>Alkali and fluoride chemical handling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Possible colloids formation</td>
<td></td>
<td>Chemical impact on environment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U compound properties</td>
<td></td>
<td>Chemical impact on operators</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Impurities (e.g. V, Cr)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Variable concentrations of test chemicals and uranium and daughter products</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PPE and other compressible solids</td>
<td>Varying levels of Surface contaminated materials</td>
<td>Alpha bearing materials Radiation dose (internal/external)</td>
<td>Heavy metal toxicity</td>
</tr>
<tr>
<td></td>
<td>Contaminated filters</td>
<td>Varying levels of activity</td>
<td>Alpha bearing materials Radiation dose (internal/external)</td>
<td>Heavy metal toxicity</td>
</tr>
<tr>
<td></td>
<td>Non-ferrous and ferrous Metals components</td>
<td>Varying levels of activity</td>
<td>Alpha bearing materials Radiation dose (internal/external)</td>
<td>Heavy metal toxicity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uranium</td>
<td></td>
<td>Environmental impact</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uranium compound properties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste management activities</td>
<td>Waste materials</td>
<td>Characteristics</td>
<td>Hazards (radiological)</td>
<td>Hazards (non-radiological)</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Organic / plastic process components e.g. PTFE</td>
<td>• Varying levels of activity</td>
<td>• Alpha bearing materials</td>
<td>• Fire</td>
<td>• Heavy metal toxicity</td>
</tr>
<tr>
<td></td>
<td>• Uranium</td>
<td>• Radiation dose (internal/external)</td>
<td>• Heavy metal toxicity</td>
<td>• Hydrogen Fluoride</td>
</tr>
<tr>
<td></td>
<td>• Uranium compound properties</td>
<td></td>
<td></td>
<td>• Fluorine</td>
</tr>
<tr>
<td></td>
<td>• Impurities of organics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contaminated electrolyte</td>
<td>• Uranium</td>
<td>Potential of exposure to:</td>
<td>• Fire and explosion</td>
<td>• Heavy metal toxicity</td>
</tr>
<tr>
<td></td>
<td>• Uranium compound properties</td>
<td>• Alpha bearing materials</td>
<td>• Hydrogen Fluoride</td>
<td>• Fluorine</td>
</tr>
<tr>
<td></td>
<td>• HF/KF electrolyte in solid and liquid forms</td>
<td>• Radiation dose (internal/external)</td>
<td>• Fluoride toxicity (acute/chronic)</td>
<td>• Heavy metal toxicity</td>
</tr>
<tr>
<td></td>
<td>• Gaseous HF</td>
<td></td>
<td></td>
<td>• Chemical burns</td>
</tr>
<tr>
<td></td>
<td>• Fluorine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Hydrogen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-compressible Solids e.g. building rubble</td>
<td>• Varying levels of activity concentration levels</td>
<td>• Alpha bearing materials</td>
<td>• Heavy metal toxicity</td>
<td>• Radiation dose (internal/external)</td>
</tr>
<tr>
<td>Organic Liquids e.g. Kerosene, TBP</td>
<td>• Varying levels of activity</td>
<td>• Alpha bearing materials</td>
<td>• Fire</td>
<td>• Heavy metal toxicity</td>
</tr>
<tr>
<td></td>
<td>• Uranium</td>
<td>• Radiation dose (internal/external)</td>
<td>• Environmental impact</td>
<td>• Environmental impact</td>
</tr>
<tr>
<td></td>
<td>• Uranium compound properties</td>
<td>• Environmental impact</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Organic properties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gases and aerosols</td>
<td>• Varying levels of activity e.g. uranium, uranium daughter products and their compounds</td>
<td>• Alpha bearing materials</td>
<td>• Heavy metal toxicity</td>
<td>• Environmental impact</td>
</tr>
<tr>
<td></td>
<td>• Varying levels of chemical composition e.g. UF6, UO2F2, HF, F2, NH3</td>
<td>• Radiation dose (internal/external)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uranium conversion (irradiated):</td>
<td>Feedstocks, products, and wastes</td>
<td>• Concentration of fission and nuclear reaction products e.g. U232 and Pu isotopes</td>
<td>• Alpha bearing materials</td>
<td>• Heavy metal toxicity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ingrowth of radionuclides during processing</td>
<td>• Elevated dose rates</td>
<td>• Corrosive chemicals</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Elevated radioactivity concentration levels</td>
<td></td>
<td>• Explosion</td>
</tr>
<tr>
<td>Uranium Enrichment (centrifuge):</td>
<td>Used Cylinders including those requiring long term management prior to</td>
<td>• Varying levels of activity from buildup of uranium and uranium daughter products and impurities</td>
<td>• Alpha bearing materials</td>
<td>• Heavy metal toxicity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Radiation dose (internal/external)</td>
<td>• Corrosive chemicals</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Explosion</td>
</tr>
<tr>
<td>Waste management activities</td>
<td>Waste materials</td>
<td>Characteristics</td>
<td>Hazards (radiological)</td>
<td>Hazards (non-radiological)</td>
</tr>
<tr>
<td>----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>reduction</td>
<td>disposal</td>
<td>• Potential for presence of residual washings</td>
<td>• criticality</td>
<td>• overpressurization</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Potential for unknown contents both mass and composition</td>
<td>• Environmental impact</td>
<td>• Environmental impact</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Hydrogen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• HF</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spent cylinder washings</td>
<td>• Varying levels of activity from buildup of uranium and uranium daughter products and impurities</td>
<td>• Alpha bearing materials</td>
<td>• Heavy metal toxicity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Variable and potential unknown chemical composition</td>
<td>• Radiodose (internal/external)</td>
<td>• Corrosive chemicals</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Hydrofluoric acid content</td>
<td>• Criticality</td>
<td>• Explosion</td>
</tr>
<tr>
<td></td>
<td>Cooling water and condensates</td>
<td>Potential uranium contamination</td>
<td>• Environmental impact</td>
<td>• Overpressurization</td>
</tr>
<tr>
<td></td>
<td>Ferrous and non-ferrous metals</td>
<td>• Varying levels of activity</td>
<td>• Alpha bearing materials</td>
<td>• Environmental impact</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Uranium</td>
<td>• Radiation dose (internal/external)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PPE and other compressible solids</td>
<td>• Varying levels of Surface contaminated materials</td>
<td>• Alpha bearing materials</td>
<td>• Heavy metal toxicity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Uranium</td>
<td>• Radiation dose (internal/external)</td>
<td>• Environmental impact</td>
</tr>
<tr>
<td></td>
<td>Gases and aerosols</td>
<td>• Varying levels of activity</td>
<td>• Alpha bearing materials</td>
<td>• Heavy metal toxicity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Varying levels of chemical composition e.g. UF6 , UO2F2, HF</td>
<td>• Radiation dose (internal/external)</td>
<td>• Environmental impact</td>
</tr>
<tr>
<td></td>
<td>Process filters</td>
<td>• Varying levels of activity</td>
<td>• Alpha bearing materials</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Uranium</td>
<td>• Radiation dose (internal/external)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Particulate filtration</td>
<td>• Varying levels of activity</td>
<td>• Alpha bearing materials</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Uranium</td>
<td>• Radiation dose (internal/external)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-compressible Solids e.g. building rubble</td>
<td>• Varying levels of activity concentration levels</td>
<td>• Alpha bearing materials</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Uranium</td>
<td>• Radiation dose (internal/external)</td>
<td>• Heavy metal toxicity</td>
</tr>
<tr>
<td>Uranium fuel fabrication:</td>
<td>Liquid effluents</td>
<td>• Concentrations of Uranium compounds as radioactive materials in waste</td>
<td>• Criticality</td>
<td>• Hydrogen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Characteristics of the Uranium as UF6 as a soluble compound</td>
<td>• Alpha bearing materials</td>
<td>• Hydrofluoric acid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Radiation dose (internal/external)</td>
<td></td>
<td>• High temperature processes</td>
</tr>
<tr>
<td>Waste management activities</td>
<td>Waste materials</td>
<td>Characteristics</td>
<td>Hazards (radiological)</td>
<td>Hazards (non-radiological)</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>of liquid effluents to the environment</td>
<td>• Characteristics of the uranium as UO2 as an insoluble compound</td>
<td>• Concentrations of Uranium as heavy metals in the waste</td>
<td>• Pyrophoric properties of Uranium metal</td>
<td></td>
</tr>
</tbody>
</table>

Mixed oxide fuel fabrication:
- Interim storage of waste
- Collection and transport of waste to central waste management area
- Interim and long term storage
- Filtration and discharge of gaseous effluents

<table>
<thead>
<tr>
<th>Waste materials</th>
<th>Characteristics</th>
<th>Hazards (radiological)</th>
<th>Hazards (non-radiological)</th>
</tr>
</thead>
</table>
| Solid waste, waste contaminated with plutonium, floor sweepings, waste and residues from decontamination | • Concentrations of Uranium and transuranics as radioactive materials in waste (e.g. americium ingrowth)
• Characteristics of the uranium and transuranics insoluble compounds
• Plutonium dust and contamination (importance of maintaining process integrity and cleanliness) | • Criticality
• Alpha bearing materials
• Radiation dose (internal/external) | • Radiolytic properties of plutonium (flammable gas generation and material breakdown)
• Heat generating (amounts of plutonium with even mass numbers and those of americium)
• Plutonium physical properties (hardness and ability to act as a grinding medium)
• High temperature processes |

Spent fuel reprocessing
- Collection, segregation and management of process residues
- Treatment and conditioning of waste materials
- Vitrification of high level liquid waste
- Bituminization of process sludges and other materials
- Cementation or Supercompaction of hulls and end-caps

<table>
<thead>
<tr>
<th>Waste materials</th>
<th>Characteristics</th>
<th>Hazards (radiological)</th>
<th>Hazards (non-radiological)</th>
</tr>
</thead>
</table>
| Cemented or compacted hulls and end caps | • Residual concentrations of Uranium and transuranics as radioactive materials in waste
• Characteristics of the uranium and transuranics insoluble compounds
• Concentration of fission products and minor actinides
• Chemical Reagents and reaction products (including hydrogen and nitrogen oxides) | • Elevated dose rates
• Ingrowth of radionuclides during processing
• Elevated radioactivity concentration levels
• Criticality (particularly in effluent precipitation processes and solvent washing) | • The possibility of an explosive reaction
• Chemical processes that generate effluent and gaseous emissions
• High temperature processes
• Chemically Reactive metals (e.g. Zirconium) |
| Magnesium and graphite wastes | • Potential for radiolysis | • Alpha bearing materials
• Radiation dose (internal/external)
• 14C concentrations | • Risk of fire/explosion from graphite dust |
| Vitrified, separated fission products and minor actinides | • High activity concentration
• Heat generation | • Alpha bearing materials
• Radiation dose (internal/external) | • |
| Contaminated equipment/technological wastes | • Surface contamination | • Alpha bearing materials
• Radiation dose (internal/external) | • |
<p>| Bituminized process sludges | | | • Hydrogen (explosion or deflagration) |</p>
<table>
<thead>
<tr>
<th>Waste management activities</th>
<th>Waste materials</th>
<th>Characteristics</th>
<th>Hazards (radiological)</th>
<th>Hazards (non-radiological)</th>
</tr>
</thead>
<tbody>
<tr>
<td>personal protective equipment and other compressible solids</td>
<td>Varying levels of surface contaminated materials</td>
<td>Alpha bearing materials, Radiation dose (internal/external)</td>
<td>Heavy metal toxicity</td>
<td></td>
</tr>
<tr>
<td>Gases and aerosols</td>
<td>Varying levels of activity, Varying levels of chemical composition depending on process used</td>
<td>Alpha bearing materials, Radiation dose (internal/external), Environmental impact</td>
<td>Heavy metal toxicity, Environmental impact</td>
<td></td>
</tr>
<tr>
<td>Process filters</td>
<td>Varying levels of activity</td>
<td>Alpha bearing materials, Radiological Dose (internal/external)</td>
<td>Heavy metal toxicity</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX 3: EXAMPLES OF HAZARDS ASSOCIATED WITH CENTRALIZED WASTE MANAGEMENT FACILITIES

<table>
<thead>
<tr>
<th>Facility description</th>
<th>Activities</th>
<th>Hazards (radiological)</th>
<th>Hazards (non-radiological)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centralized facility that receives low alpha compactable, solid waste in drums from a medical isotope processing facility and produces waste packages for disposal</td>
<td>Receiving waste and verifying WAC including sampling</td>
<td>External radiation</td>
<td>Chemical / Toxic materials</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Internal radiation (via contamination or release)</td>
<td>Industrial including handling of sharps</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chemical reactions of / between waste compounds</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fragile materials</td>
</tr>
<tr>
<td></td>
<td>Compaction of the received drums</td>
<td>External radiation</td>
<td>Generation of liquids</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Internal radiation (via contamination or release)</td>
<td>Generation of dusts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Release of radioactive liquids including oils</td>
<td>Chemical reactions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Release of radioactive dusts</td>
<td>Pressure bursts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Release of radioactive gases</td>
<td>explosions</td>
</tr>
<tr>
<td></td>
<td>Transfer, sorting and collection and drying of pucks</td>
<td>External radiation</td>
<td>industrial including handling of sharps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Internal radiation (via contamination or release)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Placement of pucks into waste container</td>
<td>External radiation</td>
<td>Industrial including handling of sharps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Internal radiation (via contamination or release)</td>
<td>Chemical / Toxic materials</td>
</tr>
<tr>
<td></td>
<td>Waste container grouted to produce a waste package</td>
<td>External radiation</td>
<td>Industrial including handling of sharps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Internal radiation (via contamination or release)</td>
<td>Chemical / Toxic materials</td>
</tr>
<tr>
<td></td>
<td>Waste package cleaning, Surveillance, Monitor and Transfer to interim Store</td>
<td>External radiation</td>
<td>Industrial</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Internal radiation (via contamination)</td>
<td>Chemical materials (grout)</td>
</tr>
</tbody>
</table>
APPENDIX 4: WASTE SPECIFIC SAFETY CONSIDERATIONS OF FUEL CYCLE FACILITIES

4.1. The following is a list of hazards associated with, or that could affect waste management at typical fuel cycle facilities. Where appropriate certain features are highlighted that require specific attention when considering radioactive waste management.

This list is not exhaustive. Rather, it provides indicators for the safety assessor to produce the equivalents of the tables in Appendices 1 and 2 for the specific facility under consideration.

NATURAL URANIUM CONVERSION

- Concentrations of Uranium compounds and uranium daughter products as radioactive materials in waste
- Concentrations of Uranium as heavy metals in the waste
- Characteristics of the Uranium compounds e.g. solubility
- Concentrations of contaminant including Chromium and Vanadium in the waste streams
- Chemical corrosive materials e.g. Hydrogen fluoride, sulphuric acid
- Chemical toxic materials e.g. Ammonia
- Fire consideration from reagents including Fluorine and hydrogen
- Chemical processes that generate effluent and gaseous emissions

IRRADIATED URANIUM CONVERSION

- As for Natural Uranium Conversion
- In addition
 - Concentration of fission and nuclear reaction products e.g. U232 and Pu isotopes
 - Elevated dose rates
 - Ingrowth of radionuclides during processing
 - Elevated radioactivity concentration levels

URANIUM ENRICHMENT FACILITIES

- Concentrations of Uranium compounds as radioactive materials in waste
- Concentrations of Uranium as heavy metals in the waste
- Characteristics of the Uranium as UF6 and as a soluble compound
- Presence of HF as a reaction product
- Bulk Depleted Uranium generation and accumulation as a corrosive fluoride e.g. (Preference for passive stable uranium storage of depleted uranium for long term management e.g. Uranium hexafluoride versus Uranium Oxide)
- Criticality in waste management processes which include techniques / chemical reactions such as precipitation
• Failure rate of process equipment (Optimizing the replacement frequency of enrichment stages where the enrichment stage is a contaminated waste metal)

URANIUM FUEL FABRICATION FACILITIES
• Concentrations of Uranium compounds as radioactive materials in waste
• Concentrations of Uranium as heavy metals in the waste
• Characteristics of the Uranium as UF6 as a soluble compound
• Characteristics of the uranium as UO2 as an insoluble compound
• Pyrophoric properties of Uranium metal
• Criticality
• Hydrogen
• Hydrofluoric acid
• High temperature processes
• Maintenance of tight manufacturing tolerances (Operator inspection requirements, fuel manufacturing failures generating waste streams)

MIXED OXIDE FUEL FABRICATION FACILITIES
• Concentrations of Uranium and transuranics as radioactive materials in waste (e.g. americium ingrowth)
• Characteristics of the uranium and transuranics insoluble compounds
• Plutonium physical properties (hardness and ability to act as a grinding medium)
• Radiolytic properties of plutonium (self-heating)
• Plutonium dust and contamination (importance of maintaining process integrity and cleanliness)
• Criticality
• Hydrogen
• High temperature processes
• Maintenance of tight manufacturing tolerances (Operator inspection requirements, fuel manufacturing failures generating waste streams)

REPROCESSING FACILITIES
• Radiological characteristics of spent fuel (burnup and cooling, effects on handling equipment)
• Physical characteristics of spent fuel (fragility)
• Concentrations of uranium and transuranics as radioactive materials in waste
• Characteristics of the uranium and transuranics insoluble compounds
Concentration of fission and nuclear reaction products
- Elevated dose rates
- In-growth of radionuclides during processing
- Elevated radioactivity concentration levels
- Criticality (particularly in effluent precipitation processes and solvent washing)
- Chemical reagents and reaction products (including hydrogen and nitrogen oxides)
- High temperature processes
- Chemically reactive metals (e.g. zirconium)
- Chemical processes that generate effluent and gaseous emissions

CENTRALIZED WASTE MANAGEMENT FACILITY

Liquid waste treatment
- Presence of all contaminants as addressed above
- Presence of dissolved contaminants and particulates within liquid streams
- Physical concentration that generates precipitates of radioactive material including fissile material
- Chemical reactions that generate precipitates of radioactive material including fissile material
- Criticality
- Chemical reagent (non-radiological hazards and environmental impact)
- Environmental impact due to discharges
- Generation of secondary radioactive waste and requirements for its predisposal management e.g. accumulation of spent radioactive ion exchange media (elevated external dose rate levels)

Gaseous waste treatment
- Presence of all contaminants as addressed above
- Presence of particulates and aerosols within gaseous effluent streams (Condensation / deposition within gaseous effluent lines)
- Environmental impact due to emissions / discharges (Effective, representative characterization and monitoring techniques are needed)
- Generation of secondary waste and their pre-disposal waste management requirements e.g. accumulation of used HEPA filters (elevated external dose rate levels), liquid wastes
- Accumulation of short lived isotopes on adsorption media (E.g. Iodine 131 on activated carbon columns)

Evaporation and incineration
- Concentration of radioactive materials including fissile materials within the waste
 - Increased dose rates
o Criticality
 o Ability to dispose of the material

- High temperatures
- Fire
- Chemical reagents
- Chemical reactions of particularly contaminations or inadvertent arisings (e.g. solvents within aqueous streams)
- Presence of all contaminants as addressed above
- Presence of particulates and aerosols within gaseous effluent streams (Condensation / deposition within gaseous effluent lines)
- Environmental impact due to emissions / discharges (Effective, representative characterization and monitoring techniques are needed)
- Generation of secondary waste and their pre-disposal waste management requirements e.g. accumulation of used HEPA filters (elevated external dose rate levels), liquid wastes

Vitrification

- Concentration of radioactive materials including fissile materials within the waste
 o Increased dose rates
 o Criticality
 o Ability to dispose of the material

- High temperatures
- Corrosive liquids and vapours (e.g. nitric acid, nitrogen oxides)
- Chemical reactions of particularly contaminations or inadvertent arisings (e.g. solvents within aqueous streams)
- Presence of all contaminants as addressed above
- Presence of particulates and aerosols within gaseous effluent streams (Condensation / deposition within gaseous effluent lines)
- Environmental impact due to emissions / discharges (Effective, representative characterization and monitoring techniques are needed)
- Generation of secondary waste with significant radioactivity levels and their pre-disposal waste management requirements e.g. accumulation of used HEPA filters liquid wastes, highly contaminated process equipment - resulting in elevated external dose rate levels)
- Corrosive effects of molten glass (generation of highly contaminated spent material)
APPENDIX 5. EXAMPLES OF MANAGEMENT SYSTEM LIFETIME PROVISIONS

DESIGN PHASE ASPECTS

5.1. Commence when a decision is made to carry out operations involving the management of radioactive materials.

(a) Review of government policies to establish national expectations and fit into national strategic waste strategy

(b) Establish the location of the facility to take into account safety and radioactive waste management aspects i.e. distance from populations centres and availability of transport links from the facility to waste treatment/disposal sites and recognizing decommissioning will also impact on populace.

(c) Establish an integrated waste strategy and Integrated Waste Management programme

(d) Establish / upgrade waste management inventory

(e) Establish steps in the management of the radioactive materials and related radioactive wastes.

(f) Evolve the waste management inventory to incorporate all wastes identified

(g) Establish initial waste disposal criteria, onward disposition criteria, storage criteria

(h) Establish links with upstream and downstream facilities

(i) Establish Integrated waste strategy and apply the waste management hierarchy to develop optimal waste management at particular design and build stage level

(j) Build additional requirements into the design of the facility and the records management

(k) Set down research and development requirements to establish the gaps in knowledge that requires filling to achieve optimal waste management

(l) Interface with regulators and government to establish and inform all requirements set down

(m) Repeat a to l through concept, development, detailed design and build stages growing the database of information, future requirements of information and auditable trail of decisions

OPERATIONAL PHASE ASPECTS

Commence when radioactive materials are introduced into the plant.

(a) Review of government policies to establish how operational needs and experience are influenced by national expectations and fit into local as well as national strategic waste strategy

(b) Establish / upgrade waste management inventory with operational data

(c) Register and record all normal waste arisings as well as those outside the normal arisings

(d) Establish and monitor the behaviour of radioactive waste in the steps in the management of the radioactive materials and related radioactive wastes.

(e) Evolve the waste management inventory to incorporate all wastes identified

(f) Evolve via links established earlier waste disposal criteria, onward disposition criteria, storage criteria
Improve and add detail to the Integrated waste strategy and plan and apply the waste management hierarchy to develop optimal waste management as information evolves from the facility

Build additional requirements into the operation of the facility and the records management

Develop the design and construction of the facility as it is modified during the operational phase to deal with where possible the gaps in knowledge that require filling to achieve optimal waste management

Interface with regulators and government to establish and inform all requirements set down and interface with the national waste strategy and plan

Repeat a to j through the commissioning, operation and shutdown phases growing the database of information, future requirements of information and auditable trail of decisions

DECOMMISSIONING PHASE ASPECTS

Commence when radioactive materials are removed from the plant.

Review of government policies to establish national expectations and fit into national strategic waste strategy

Establish / upgrade waste management inventory via techniques including monitoring

Utilize the waste management inventory to establish the scope and condition of the waste remaining within the facility

Establish and monitor the behaviour of radioactive waste in the steps in the management of the radioactive materials and related radioactive wastes by selection of appropriate methods and equipment that deliver optimal waste minimization.

Evolve the waste management inventory to incorporate all wastes identified

Evolve via links established earlier waste disposal criteria, onward disposition criteria, storage criteria

Improve and add detail to the Integrated waste strategy and plan and apply the waste management hierarchy to develop optimal waste management as information evolves from the facility

Build additional requirements into the operation of the decommissioning process and the records management

Interface with regulators and government to establish and inform all requirements set down and interface with the national waste strategy and plan

Repeat (a) to (i) through the decommissioning and interim storage phases growing the database of information, future requirements of information and auditable trail of decisions
APPENDIX 6. DEVELOPMENT OF SPECIFICATIONS FOR WASTE PACKAGES

6.1. Specifications for conditioned radioactive waste are established to ensure that the waste package satisfies the relevant acceptance criteria for storage or disposal, as well as transport requirements. The radiological characteristics are identified at an early stage. Other waste package specifications may be divided into four main topics: chemical and physical properties, mechanical properties, containment capacity and stability. This last topic, robustness, concerns the capacity of the waste package to retain radionuclides over extended periods of time.

RADIOLOGICAL PROPERTIES

The radiological characteristics of the waste could include:

(a) number and types of radionuclides;
(b) total radioactivity content;
(c) half-life;
(d) activity;
(e) activity concentrations;
(f) dose rate;
(g) Heat output.

CHEMICAL AND PHYSICAL PROPERTIES

The chemical and physical properties of the waste form include:

(h) chemical composition;
(i) density, porosity, permeability to water and permeability to gases;
(j) homogeneity and the compatibility of the waste with the matrix;
(k) thermal stability;
(l) percentage of water incorporated, exudation of water under compressive stress, shrinkage and curing;
(m) leachability and corrosion rate.

The chemical and physical properties of the container include:

(a) materials;
(b) porosity, permeability to water and permeability to gases;
(c) thermal conductivity;
(d) solubility and corrosion in corrosive atmospheres or liquids such as water or brines.

The physical properties of the waste package include:

(a) number of voids in the container (which are to be minimized);
(b) characteristics of the lidding and sealing arrangements;
(c) sensitivity to changes in temperature.

MECHANICAL PROPERTIES

The mechanical properties of the waste form include its tensile strength, compressive strength and dimensional stability.

The mechanical properties of the waste package include its behaviour under mechanical (static and impact) or thermal loads.

CONTAINMENT CAPABILITY

The containment capability of the waste package concerns:

(a) diffusion and leaching of radionuclides in an aqueous medium;
(b) release of gas under standard atmospheric conditions or the conditions in a repository;
(c) diffusion of tritium under standard atmospheric conditions or conditions in a repository;
(d) capability for the retention of radionuclides;
(e) water-tightness and gas-tightness of the package sealing device.

ROBUSTNESS

Robustness of the waste package concerns:

(a) behaviour under temperature cycling;
(b) sensitivity to elevated temperatures and behaviour in a fire;
(c) behaviour under conditions of prolonged radiation exposure;
(d) sensitivity of the matrix to water contact;
(e) resistance to the action of micro-organisms;
(f) corrosion resistance in a wet medium (for metal containers);
(g) porosity and degree of gas tightness;
(h) potential for swelling due to the internal buildup of evolved gases.
REFERENCES

[34] INTERNATIONAL ATOMIC ENERGY AGENCY, Seismic Hazards in Site Evaluation for Nuclear Installations, IAEA Safety Standards Series No. SSG-9, IAEA, Vienna (2010).

[38] INTERNATIONAL ATOMIC ENERGY AGENCY, Construction of Nuclear Installations, DRAFT SAFETY GUIDE DS441 (in preparation).

CONTRIBUTORS TO DRAFTING AND REVIEW

Baekelandt, L. Federal Agency for Nuclear Control (FANC), Belgium

Blundell, N. Office for Nuclear Regulation, United Kingdom

Fass, T. Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, Germany

Kinker, M. International Atomic Energy Agency

Leroyer, V. Institute for Radiological Protection and Nuclear Safety, France

Selling, H. Ministry of Economic Affairs Agency, Netherlands

Visagie, A. South African Nuclear Energy Corporation, South Africa