

1 2

FOREWORD

3 [TO BE ADDED LATER]

4

•

1	CONTENTS
2 3	1. INTRODUCTION
4	1.1 BACKGROUND
5	1.2 OBJECTIVES
6	1.3 SCOPE
7	1.4 STRUCTURE
8	2. NEED FOR A NATIONAL NUCLEAR FORENSICS LIBRARY
9	3. DEVELOPMENT OF A NATIONAL NUCLEAR FORENSICS LIBRARY
10	3.1 LIBRARY SCALE
11	3.2 GENERAL REQUIREMENTS
12	3.4 LIBRARY ADMINISTRATOR ROLE
13	3.5 GRADUAL DEVELOPMENT PROCESS
14	3.6 USE OF PATTERNS AND TRENDS IN MATERIALS INFORMATION10
15	3.7 MATERIAL ARCHIVE10
16	4. TECHNICAL BASIS FOR THE DESIGN OF A NATIONAL NUCLEAR FORENSICS LIBRARY
17	
18	5. NUCLEAR FUEL CYCLE AND TYPES OF RADIOACTIVE SOURCES DATA TABLES 13
19	5.1 GENERAL INFORMATION TO BE INCLUDED
20	5.2 SPECIFIC INFORMATION: NUCLEAR FUEL CYCLE STAGES AND TYPES OF
21	RADIOACTIVE SOURCES14
22	5.3 TECHNICAL GUIDANCE PROVIDED IN THE TABLES
23	7. COMPARATIVE ANALYSES WITH A NATIONAL NUCLEAR FORENSICS LIBRARY28
24	8. APPLICATION OF A NATIONAL NUCLEAR FORENSICS LIBRARY
25	9. INTERNATIONAL DIRECTORY OF STATES WITH A NATIONAL NUCLEAR FORENSICS
26	LIBRARY
27	10. INTERNATIONAL COOPERATION AND NATIONAL NUCLEAR FORENSICS LIBRARIES
28	
29	11. INTERNATIONAL OUTREACH AND ASSISTANCE
30	APPENDIX I: HYPOTHETICAL REPRESENTATIONS OF LIBRARY DATA FOR THREE
31	DISTINCT MATERIALS
32	APPENDIX II: DESCRIPTION OF UNITS FOR MATERIAL CHARACTERISTICS
33	REFERENCES41
34	DEFINITIONS
35	
36	

1. INTRODUCTION

2 1.1 BACKGROUND

The international community has recognized the serious threat posed by nuclear and other radioactive material out of regulatory control. To address these concerns, the Office of Nuclear Security of the International Atomic Energy Agency (IAEA) is developing, inter alia, guidance for nuclear forensics to assist Member States. Nuclear forensics is the comprehensive scientific analysis of nuclear and other radioactive materials or evidence contaminated with radioactive material in the context of national and international law and nuclear security. A nuclear forensics examination may involve direct measurements of these materials and their comparison with reference information.

A national nuclear forensics library consists of descriptions, and in some cases samples, of nuclear and other radioactive material produced, used, or stored within a State. The library is a compilation of this reference information. In the context of this document, "used within a State" may also include materials transported within or through a State, and when practical, such materials may be included in the national nuclear forensics library. It is at the discretion of the State to decide the extent to which transported materials within their horders are included in the library.

15 materials within their borders are included in the library.

A library enhances a State's ability to identify their own inventories of nuclear and other radioactive material and promote good practices for maintaining material under regulatory control. A national nuclear forensics library also provides the basis for conducting comparative assessments of material encountered out of regulatory control, and thus is an important part of an effective nuclear security infrastructure. Because States are responsible for the development and implementation of an effective national nuclear security infrastructure, the creation of a national nuclear forensics library strengthens nuclear forensics as a means to ensure the security of nuclear and other radioactive material.

23 A national nuclear forensics library augments a State's ability to assess whether nuclear and other 24 radioactive material encountered out of regulatory control originated from within that State or elsewhere. 25 Such a library consists of an organized collection of information, and in some cases samples, of nuclear 26 and other radioactive material produced, used or stored by a State. Much of the information in a national 27 nuclear forensics library may already exist in a State, having been collected at other times and for other 28 purposes. Using a national nuclear forensics library, the characteristics of nuclear and other radioactive 29 material found out of regulatory control may be compared with those of material organized within the 30 national nuclear forensics library to provide information about the material's origin and history. The 31 responsibility for establishing and maintaining a nuclear forensics library as part of comprehensive 32 nuclear security infrastructure rests with the State.

1 The isotopic, chemical and physical properties of nuclear and other radioactive materials provide 2 information on their provenance, manufacture, and processing, and could therefore serve as important 3 indicators of the materials' origin and history. Comparative assessments of these characteristics with 4 existing information could be used to identify or exclude possible origins and production history of 5 nuclear or other radioactive material out of regulatory control. This capability allows nuclear forensics to 6 serve both as a means to assist investigations and, increasingly, due to its ability to track and trace 7 material, as a preventive measure to discourage the diversion of nuclear and other radioactive materials 8 out of regulatory control [1]. There is a possibility the information provided by the library may be used in 9 a criminal investigation and used as evidence in a court of law.

10 The 2010 through 2012 IAEA General Conference resolutions on nuclear security and IAEA Nuclear 11 Security Series No. 15 on Nuclear Security Recommendations on Nuclear and Other Radioactive Material 12 out of Regulatory Control [2] include statements that endorse the development of a national nuclear 13 forensics library as part of a State's nuclear security infrastructure. Additionally, the need for States to 14 develop and maintain a national nuclear forensics library were emphasized in the communiques from both 15 the 2010 Nuclear Security Summit convened in Washington, DC USA and the 2012 Nuclear Security

16 Summit convened in Seoul, Republic of Korea.

17 Recent efforts at the IAEA have focused on the technical approach for States to develop a national 18 nuclear forensics library. This work has benefitted from the strong partnership between the IAEA and the 19 Nuclear Forensics International Technical Working Group. The IAEA and its experts also recognize that 20 a centralized international database is impractical, given the sensitivity of information related to a State's 21 individual holdings of nuclear and other radioactive material due to the national security or the 22 proprietary nature of such information. For this reason, the IAEA is providing States with guidance on 23 developing a national nuclear forensics library that use similar conceptual frameworks and have 24 components in common. Such a common approach should allow States to support the security of nuclear 25 and other radioactive material under their regulatory control and encourage States to work together to 26 identify material that is found out of regulatory control, deliberately or accidently.

In this document, the term 'national nuclear forensics library', rather than 'nuclear forensics database', is used to indicate that data, information and input from technical experts may all be included in such a library and that this library of information may be distributed involving many individual databases. The library may encompass individual databases that include current and historical information on nuclear and other radioactive materials used, produced, or stored within a State. The control of nuclear forensic data and library holdings is recognized as being the responsibility of individual States.

1 1.2 OBJECTIVES

The objectives of this publication are to promote awareness about the importance of a national nuclear
forensics library, and to provide broad guidance on the development of a national nuclear forensics
library.

5 1.3 SCOPE

6 This publication identifies a national nuclear forensics library as a core component of a State's national 7 nuclear security infrastructure and provides guidance for States on collecting and organizing information 8 about nuclear and other radioactive material based on nuclear fuel cycle stages and radioisotope source 9 types. It also provides a context for using a national nuclear forensics library in material comparisons and 10 addresses how States might use a national nuclear forensics library in domestic investigations and 11 international cooperation.

This publication does not include specific instruction on: how to construct a national nuclear forensics library; how to establish a material sample archive (complementary to a nuclear forensics library); legal, policy, and financial aspects regarding the establishment of a nuclear forensics library; what, if any, information should be shared with other States; how to share that information; and advice on how to conduct nuclear forensic investigations. General guidance on this last topic is however provided by the IAEA Nuclear Security Series No. 2 publication entitled Nuclear Forensics Support [1].

18 1.4 STRUCTURE

19 This publication is organized as follows: Section 2 articulates the need for a national nuclear forensics 20 library to be developed and maintained by individual States. Section 3 describes the information 21 necessary for the development of a national nuclear forensics library. Section 4 presents the technical 22 basis for the design of a national nuclear forensics library. Section 5 provides data tables for the 23 characteristics of nuclear and other radioactive material included in the library. Section 6 describes how 24 information in a national nuclear forensics library enables comparative analyses with known class 25 characteristics. Section 7 illustrates the application of a national nuclear forensics library in the context of 26 nuclear or other radioactive material encountered out of regulatory control. Section 8 presents the 27 rationale for a proposed international directory of States with a national nuclear forensics library. Section 28 9 provides a description of international cooperation utilizing a national nuclear forensics library. Section 29 10 describes IAEA outreach available to States to assist in the development of a national nuclear forensics 30 library. Appendix I provide example data entries from a hypothetical library and Appendix II lists 31 recommended units for library data. A list of definitions used in the publication is also provided.

1

2. NEED FOR A NATIONAL NUCLEAR FORENSICS LIBRARY

2 The most important purpose of a national nuclear forensics library is to enhance a State's ability to assess 3 whether material encountered out of regulatory control is or is not consistent with nuclear and other 4 radioactive material produced, used or stored within the State. Nuclear forensics utilizes information 5 inherent to the material, such as chemical composition, isotope ratios and physical dimensions arising 6 from geologic or manufacturing processes. These indicators, often referred to as signatures, form the basis 7 for nuclear forensic comparisons and are the information at the core of a national nuclear forensics 8 library. However, for many States with limited amounts of nuclear and other radioactive material, non-9 technical indicators (such as serial numbers for radioactive sources) may be all that are required to 10 definitively identify material consistent with a State's holdings.

11 Nuclear forensics can provide information on the origin and process history of nuclear and other 12 radioactive materials. Isotopic, chemical or physical signatures incorporated during the production 13 process are essential to these assessments. Process information includes information associated with the 14 mining, extraction, concentration, isotopic enrichment, manufacture, use, reprocessing, or disposal of 15 material from the nuclear fuel cycle and similar processes for radioactive sources. Nuclear forensics 16 requires validated scientific measurements to utilize nuclear forensic signatures to determine the origin 17 and process history of material through comparisons using a national nuclear forensics library.

18 By providing information on the provenance of nuclear and other radioactive material found out of 19 regulatory control, nuclear forensics contributes to a State's nuclear security infrastructure. By potentially 20 identifying vulnerabilities where nuclear and other radioactive material may be diverted out of regulatory 21 control, nuclear forensics supports improvements in material accountability and physical protection 22 measures. Illicit trafficking of nuclear and other radioactive material is a transnational concern. For 23 example, materials may be legitimately mined and milled at one location, isotopically enriched and 24 manufactured into fuel pellets at a second location, and subsequently diverted outside of regulatory 25 control at a third. For this reason, the establishment of a national nuclear forensics library by more States 26 promotes improved nuclear security practices and as a result helps strengthen nuclear security 27 internationally.

The library is useful for nuclear forensic examinations both now as well as in the future, long after nuclear and other radioactive material production processes are complete. The library comprises information and knowledge on the holdings of nuclear and other radioactive materials and assists in sustaining nuclear fuel cycle knowledge in the absence of subject matter experts with direct experience.

A national nuclear forensics library allows investigative leads to be prioritized. The library enables rapid
 comparisons and the exclusion of signatures that are inconsistent with measurements. Using prioritized

signatures derived from a national nuclear forensics library increases the confidence of nuclear forensicconclusions.

In the context of investigating a nuclear security event, the ability to include or exclude likely origins of material provides a powerful deterrent to the unauthorized diversion or theft of nuclear and other radioactive material. As more States develop a national nuclear forensics library, the confidence that nuclear forensics assists in identifying the origin and process history of nuclear and other radioactive materials is strengthened. The IAEA is working with States to raise awareness of the need for a national nuclear forensics library as a core component of a State's nuclear security infrastructure.

9

17

3. DEVELOPMENT OF A NATIONAL NUCLEAR FORENSICS LIBRARY

10 3.1 LIBRARY SCALE

Ideally, a national nuclear forensics library is commensurate with the State's activities and the size and complexity of its nuclear and other radioactive material holdings. Developing a national nuclear forensics library involves a coordinated national effort that uses existing technical expertise and information from a State's experience with nuclear and other radioactive material (see Fig. 1). For example, this information may include a registry of radioactive sources, regulatory reports, information supporting nuclear materials accountancy and production information on nuclear and other radioactive material.

FIG 1. The association between a State's existing technical expertise and information required for its
 national nuclear forensics library.

1 3.2 GENERAL REQUIREMENTS

- 2 Development of a national nuclear forensics library likely requires, at a minimum, the identification of
- 3 responsible personnel and the provision of computer hardware and software with regular maintenance.
- 4 Depending on a States interests and needs, it may also necessitate the allocation of resources and people
- 5 to provide products and equipment to verify and harmonise data, to analyse samples and possibly to
- 6 develop and apply new nuclear forensics techniques.

7 3.3 USE OF EXISTING INFORMATION

8 Much of the data and information necessary for a national nuclear forensics library may have been 9 generated in the past. It is probable that a significant portion of this information has been collected for 10 purposes other than nuclear forensics. Information sources may include nuclear research laboratories, 11 academia, material producers, nuclear facilities, regulatory bodies, and medical, industrial or other 12 facilities. Data from disparate sources may need to be converted to a standard format (e.g. SI units) prior 13 to incorporation into the library to facilitate comparisons of material out of regulatory control with library 14 data. A State should ensure that processes are established to provide current and validated information to 15 the national nuclear forensics library.

16 3.4 LIBRARY ADMINISTRATOR ROLE

17 To ensure successful organization of this information, it is suggested that a library administrator is 18 designated by the State to oversee and manage its national nuclear forensics library. The library 19 administrator may be an individual or a team in a State with technical comprehension and access to the 20 domain expertise represented by the national nuclear forensics library, enabling routine and 21 comprehensive access to the library contents. The library administrator should be familiar with the 22 domestic nuclear fuel cycle, isotope production, and nuclear and other radioactive material holdings, and 23 administer the national nuclear forensics library in a manner that allows for accurate retrieval of 24 information. A library administrator is responsible for identifying and organizing information from 25 relevant organizations, institutes and facilities for inclusion in the national nuclear forensics library. In 26 some instances, specific agreements may be needed to arrange information sharing between the library 27 administrator and the information provider.

28 3.5 GRADUAL DEVELOPMENT PROCESS

29 The development of the library is a gradual and on-going process of surveying, collecting and organizing 30 information about nuclear and other radioactive material produced, used or stored in the State and should 31 be established in advance of a nuclear security event to enable timely interpretations and response.

1 3.6 USE OF PATTERNS AND TRENDS IN MATERIALS INFORMATION

2 It is anticipated that a consolidated view of a State's materials information helps to reveal patterns or 3 trends in characteristics of domestic nuclear and other radioactive materials that should enhance a State's 4 ability to compare their own materials with forensic samples. It may also identify gaps that need to be 5 filled. Having a national nuclear forensics library allows States to develop signatures for their domestic 6 materials based on discriminating material characteristics (e.g. major and minor isotopes, age of the 7 sample, and physical dimensions) that should assist nuclear forensic examinations in determining if 8 materials encountered outside of regulatory control are or are not consistent with a State's material 9 holdings. Harmonization or regular updating of the information in the national nuclear forensics library is 10 essential for maintaining the value of the library as a State's material holdings and analytical capabilities 11 evolve.

12 3.7 MATERIAL ARCHIVE

13 A national nuclear forensics library may be complemented by a collection of archived nuclear and other 14 radioactive materials. Maintaining an archive of these materials provides exemplars representative of fuel 15 cycle or types of radioactive sources available that can be studied in detail for forensic characteristics, and 16 direct comparison to forensic samples. In some cases, it may be more cost effective to hold representative 17 materials in an archive by deferring detailed and often expensive analysis until funds are available, or 18 even until analytical capabilities are established and validated. The study of archive samples may be 19 valuable for identifying material characteristics and signatures important for comparative analysis. 20 Additionally, archive samples may be useful for validating analytical procedures and for training 21 personnel in forensic analysis methods. It may be impractical to archive short-lived radioisotopes.

22 23

4. TECHNICAL BASIS FOR THE DESIGN OF A NATIONAL NUCLEAR FORENSICS LIBRARY

To assist States with organizing their information on nuclear and other radioactive material in a national 24 25 nuclear forensics library, the IAEA has devised an organizational scheme that aligns material information 26 with stages of the nuclear fuel cycle or types of radioactive sources (see Fig. 2). The organizational 27 scheme builds upon three sequential steps. First, nuclear fuel cycle processes are determined. Second, for 28 each nuclear fuel cycle process step selected, key discriminating material characteristics (e.g. isotope 29 abundance, trace element concentration) are identified. Third, a data discriminator (high, medium or low) 30 is assigned to each material characteristic to indicate the characteristic's significance as a parameter for 31 comparing materials with different production histories, but from the same step in the fuel cycle. The 32 tables should be considered as guidance, and may not be entirely applicable to a State's library effort. For 1 example, a State with minimal material holdings may find it adequate to keep track of sources by serial

- 2 numbers and a few basic parameters rather than catalogue all of the information recommended in the
- 3 table.
- 4 Fig. 2 summarizes nuclear fuel cycle and radioactive source production processes associated with nuclear
- 5 and other radioactive material in a national nuclear forensics library.

NUCLEAR FUEL CYCLE STAGES	EXAMPLE MATERIALS
1. Geologic Deposition	Ore, ore body
2. Uranium Mining, Milling, and Extraction	Ore concentrate, yellow cake
3. Uranium Conversion	UF_6 , UF_4 , UO_2 , U_3O_{8} , uranium metal and alloys
4. Uranium enrichment	UF ₆ , UF ₄ , UCl ₄ , uranium metal
5. Uranium Fuel Fabrication	UO_2 , U_3O_8 , pellets, rods/plates, elements, scrap
6. Mixed Oxide (MOX) Fuel Fabrication	MOX powder, pellets, rods, scrap
7. Fresh Nuclear Fuel	Fuel assemblies
8. Irradiated (Spent) Nuclear Fuel	Spent fuel
9. Reprocessing	Plutonium nitrate, uranyl nitrate, plutonium oxide, uranium oxide, mixed oxide, other actinides
10. Radioactive Waste Processing, Handling and Storage	Radioactive waste forms
TYPE OF RADIOACTIVE SOURCES	EXAMPLE MATERIALS
11. Sealed Radioactive Sources	Radiography, well logging sources, sterilizers, therapeutic medicine
	Tracer studies, research and development, diagnostic or

FIG 2. Summary of the stages of the nuclear fuel cycle and radioactive source production associated with material in a national nuclear forensics library

10 A notional structure of a national nuclear forensics library is illustrated in Fig. 3. A national nuclear 11 forensics library consists of a material master index, domain expertise, and data and information 12 organized according to relevant stages of the nuclear fuel cycle or production of isotopes for radioactive 1 sources. The material master index provides a summary of all information in the library, and can be used 2 by the library administrator to locate specific information and also contact the appropriate technical 3 expert. Domain expertise (provided by an individual expert or specialists) assists the library administrator 4 to identify and organize information from a specific nuclear fuel cycle stage or type of radioactive source. 5 Such expertise also helps in analysing the information for patterns or trends that enhance a State's ability 6 to determine distinguishing features about its own material holdings. It should be noted that the 7 population of the library is, in some cases, an on-going process; and that it should be developed in a 8 flexible manner which would allow additional information and/or the creation of additional fields to be 9 included at a later date.

- 10 A State's national nuclear forensics library is usually expected to be a smaller subset of all the fields
- 11 illustrated in Fig. 3, as the library scales with size and complexity of a State's nuclear or other radioactive
- 12 material holdings

13 14

FIG 3: Notional structure of a national nuclear forensics library incorporating stages of the nuclear fuel 15 cycle and types of radioactive sources illustrated in Fig. 2. A State's national nuclear forensics library is 16 usually expected to be a smaller subset of all the fields illustrated in Fig. 3, as the library scales with size 17 and complexity of a State's nuclear or other radioactive material holdings. Therefore, a State's national 18 nuclear forensics library will only include domain expertise for materials consistent with a State's

1 5. NUCLEAR FUEL CYCLE AND TYPES OF RADIOACTIVE SOURCES DATA TABLES

2 Developing a national nuclear forensics library begins with identifying and organizing existing material 3 information from relevant stages of the nuclear fuel cycle and types of radioactive sources to include the 4 production and use of radioactive sources. For example, information may be found in a State's registry of 5 radioactive sources and production records for nuclear materials. Domain experts determine which 6 material characteristics are relevant and should be included in a national nuclear forensics library. A batch 7 of nuclear or other radioactive material is assumed to incorporate a unique nuclear forensic identity (or set 8 of signatures). For each batch, the general information (e.g. name and address of material custodian, 9 supplier address, batch identification) in combination with specific isotopic, chemical and physical data 10 bearing on material origin and process history helps to identify the material. The national nuclear 11 forensics library also includes information pertaining to material from intermediate processes that could 12 possibly be diverted (e.g. process archive samples).

The organizational scheme for linking nuclear fuel cycle and isotope production processes and corresponding data categories is presented in Tables 1–12. Each table represents a process step in the nuclear fuel cycle or type of radioactive source and includes the key material characteristics corresponding to each process step. For each process step, the associated key material characteristics are assigned a data discriminator of high, medium or low denoting the significance of the key material characteristic's contribution to a nuclear forensic signature (for example its ability to be a distinguishing feature).

20 5.1 GENERAL INFORMATION TO BE INCLUDED

In addition to the material data and information contained in Tables 1–12, general information for
 inclusion in a national nuclear forensics library may include the following:

- 23 Data record date (inclusion date into library);
- Name and address of the custodian of the nuclear and other radioactive material (e.g. production
 or storage facility or installation);
- Name and address of the analytical laboratory and laboratory identification number with the date
 of analysis of the nuclear and other radioactive material;
- 28 Country of origin of the nuclear and other radioactive material;
- Name and address of the supplier (i.e., originator) of the nuclear and other radioactive material;

- 1 Nuclear and other radioactive material batch identification and process date from supplier (to the
 2 extent possible, such information may already be available within a State, and such existing
 3 information is helpful for a library);
- 4 Shipper/carrier and receiver information, including dates;
- 5 Data vetting information (e.g., determination of data quality, pedigree and completeness);

6 — Variation in the range of a data characteristic (e.g., technical specifications). For example, low 7 enriched uranium used in commercial light water reactors typically ranges in isotopic enrichment 8 between 3 to 5% ²³⁵U;

9 — Information acquisition date, including stating if archived information was used.

10 The general information topics that would be associated with materials information in a national nuclear 11 forensics library will depend on a State's requirements. Thus, a State will include topics of general 12 information as they deem appropriate for their needs, and these topics may differ from the suggested 13 topics listed above.

14 5.2 SPECIFIC INFORMATION: NUCLEAR FUEL CYCLE STAGES AND TYPES OF

15 RADIOACTIVE SOURCES

Analytical measurement data included in a national nuclear forensics library should use consistent units to help facilitate timely and meaningful comparisons. SI units should be used wherever possible; isotopic compositions should be reported as atom ratios, with all isotopes of uranium reported relative to ²³⁸U (e.g., ²³⁵U/²³⁸U) and ²³⁹Pu for plutonium. Sometimes, due to existing data streams or other circumstances, it may be easier to capture data in the library using non-SI units. For this reason, careful attention should be paid to ensuring unit agreement between data from disparate sources.

22 Radionuclide or isotope ratio measurement results should be reported with a reference date, to facilitate 23 quality comparative analysis. This is especially true for measurements that include shorter-lived radionuclides (e.g. ²⁴¹Pu). Inclusion of measurement reference dates or production dates may also help 24 25 facilitate the application of radiochronometry measurements to help identify whether or not a seized material is consistent with materials found in the library. For example, if the ²³⁰Th/²³⁴U ratio measured in 26 27 uranium fuel indicates it is 30 years old, and the only plant in a State producing material began operations 28 10 years ago, then based on age alone the forensic sample is not consistent with material produced by the 29 State. Radiochronometers are generally only applicable to relatively pure materials, typically found in the 30 later stages of the fuel cycle, and it is important to understand limitations of radiochronometry 31 measurements if they are to be effectively used as forensic signatures.

1 It is also important, wherever possible, to include analytical uncertainties for each measurement result 2 included in a library. Ideally, analytical uncertainties would be estimated using internationally accepted 3 practices, for example those found in the Guide for the Estimation of Uncertainty in Measurement (GUM) 4 [3]. Acknowledging that data included in the library may have been generated for other purposes (e.g. for 5 process quality control), uncertainties may not always be available. In these cases, data may still be 6 valuable, but a thorough understanding of any limitations concerning data accuracy or poor precision is 7 important before including data in a national nuclear forensics library or using data for a comparative 8 analysis.

9 In summary, when beginning to develop a national nuclear forensics library, the first step is for the State 10 to collect and organize its existing material information. It may be valuable to identify and engage a set of 11 domain experts knowledgeable of the nuclear and other radioactive material operations within a country; 12 the measurements made on those materials for process control, quality assurance, or accountancy; 13 techniques for organizing large data sets; and querying, filtering, and performing comparative analysis of 14 data. The second step is to use the following tables, as they pertain to the State's fuel cycle activities, type 15 of radioactive source, and material holdings, as a guide to organizing existing data in the context of 16 material production processes and use of material.

17 5.3 TECHNICAL GUIDANCE PROVIDED IN THE TABLES

Tables 1 through 12 serve as technical guidance for categorizing and organizing information for inclusion in a national nuclear forensics library. These tables are not intended to be data input templates, but rather they are lists of information categories and material characteristics that may be helpful in organizing a State's material holdings information for forensic purposes. State's may adopt or modify these guidance lists as they deem appropriate to meet their needs for a national nuclear forensics library.

The material characteristics presented in Tables 1 through 12 are not listed a priority order. Rather, the characteristics are listed in a sequence that generally follows typical material examinations: nondestructive measurements would be performed before using destructive methods. For example, visual inspections and optical microscopy would generally be performed before isotopic analyses.

The Tables have been constructed to be applicable to all nuclear fuel cycles. Although the tables specifically include characteristics and processes associated with uranium and plutonium, because these are the most common, the table are also applicable to other fuel cycles, such as thorium. Depending on the needs of a State, the tables could be adapted where applicable to other fuel cycles, and the characteristics that would be included in national nuclear forensics library would be similar. For example, for a thorium fuel cycle, Table 3 on conversion would be the same but with thorium replacing uranium in the table.

line location eological formation eposit types lining technique olour inerals present nemical composition of inerals olume percentages of inerals ranium concentration ranium concentration neertainty otope ratios (²³⁸ U in the enominator) otope ratio uncertainty	High Low Low	Relevant description of the geology of the material (ore) deposit and body (e.g. vein, sedimentary deposit, etc.) Mineral identified as part of exploration and mining processes Typically expressed in g/tonne $^{235}U/^{238}U$ and $^{234}U/^{238}U$ Add isotope ratios similar to Pb
inerals present nemical composition of inerals olume percentages of inerals ranium concentration ranium concentration neertainty otope ratios (²³⁸ U in the enominator) otope ratio uncertainty	Low Low Low	Mineral identified as part of exploration and mining processes Typically expressed in g/tonne ²³⁵ U/ ²³⁸ U and ²³⁴ U/ ²³⁸ U Add isotope ratios similar to Pb
ranium concentration ranium concentration <u>ncertainty</u> otope ratios (²³⁸ U in the enominator) otope ratio uncertainty	Low	Typically expressed in g/tonne ²³⁵ U/ ²³⁸ U and ²³⁴ U/ ²³⁸ U Add isotope ratios similar to Ph
otope ratios (²³⁸ U in the enominator) otope ratio uncertainty	Low	$\frac{^{235}\text{U}/^{238}\text{U} \text{ and }}{^{234}\text{U}/^{238}\text{U}}$ Add isotope ratios similar to Pb
.C		Add isotope ratios
otope name se standard units for articular isotope system ncertainty	High	Per mil (‰) for C, O, N, S ⁸⁷ Sr/ ⁸⁶ Sr ratio for Sr ε_{Nd} for Nd Isotope ratios for Pb (²⁰⁸ Pb/ ²⁰⁴ Pb, ²⁰⁷ Pb/ ²⁰⁴ Pb, ²⁰⁶ Pb/ ²⁰⁴ Pb)
race element oncentration race element oncentration uncertainty	High	Typically expressed in µg/g sample
	rticular isotope system acertainty ace element ncentration ace element ncentration uncertainty	rticular isotope system

1 TABLE 1. GEOLOGIC DEPOSITION (ORE AND ORE DEPOSITS)

TABLE 2. URANIUM MINING, MILLING, AND EXTRACTION (ORE CONCENTRATE, YELLOWCAKE)

Characteristic	Characteristics — Data elements	Data discriminator	Notes
Chemical form	Compound nameStoichiometry deviation	High	U ₃ O ₈ , ((NH ₄) ₂ U ₂ O ₇)
Physical characteristics	• Density	Low	Density expressed in g/cm ³
Morphology/ Crystallography	 Lattice structure Aspect ratio Porosity Colour Particle size (and distribution) Shape Surface features (e.g. scratches) 	Low	Descriptive shape of individual grains (e.g. round, oval, square, smooth, rough)
Uranium concentration	Uranium concentrationUranium concentration uncertainty	Low	Expressed in g/g
Uranium isotopes	 Isotope ratios (²³⁸U in the denominator) Isotope ratio uncertainty 	Low	235 U/ 238 U and 234 U/ 238 U
Uranium decay series radionuclides	 Isotope name Activity concentration Activity concentration uncertainty 	High	Radioactive disequilibrium indicates chemically processed materials
Stable isotopes	 Isotope name Use standard units for particular isotope system Uncertainty 	High	Per mil (‰) for C, O, N, S 87 Sr/ 86 Sr ratio for Sr ε_{Nd} for Nd Isotope ratios for Pb $(^{208}$ Pb/ 204 Pb,
			²⁰⁷ Pb/ ²⁰⁴ Pb, ²⁰⁶ Pb/ ²⁰⁴ Pb)
Trace element	 Trace element concentration Trace element concentration uncertainty 	High	Typically expressed in µg/g sample
Process information (In context of how it affects material)	 Mining and milling process Location of processing site Dates when production occurred (range) 	High	Process description, location of plant and dates of production

TABLE 3. URANIUM CONVERSION (INCLUDING UF6, UF4, UO2, U308, METAL OF NATURAL URANIUM, DEPLETED URANIUM, LOW ENRICHED URANIUM AND HIGHLY ENRICHED URANIUM)

Characteristic	Characteristics — Data elements	Data discriminator	Notes
Physical characteristics	 Density Solid, liquid, gas Mechanical properties (e.g., tensile strength, hardness, ductility, etc.) 	High	Density expressed in g/cm ³
Morphology/ Crystallography	 Lattice structure Aspect ratio Porosity Colour Particle size (and distribution) Shape Surface features (e.g. scratches) 	Medium	Descriptive shape of individual grains (e.g. round, oval, square, smooth, rough)
Chemical form	Compound name	High	
Uranium concentration	 Uranium concentration Uranium concentration uncertainty 	Medium	Expressed in g/g
Trace element	 Trace element concentration Trace element concentration uncertainty 	Medium	Typically expressed in µg/g sample
Uranium isotopes	 Isotope ratios (²³⁸U in the denominator) Isotope ratio uncertainty 	High	²³⁵ U/ ²³⁸ U, ²³⁴ U/ ²³⁸ U, ²³⁶ U/ ²³⁸ U, ²³³ U/ ²³⁸ U, ²³² U/ ²³⁸ U
Process information (In context of how it affects material)	 Process type Date range for production Location of processing site 	Medium	Process description (e.g. fluorination),location of plant and dates of production
Container	Container typeVolumeDimensions	High	Primarily for UF ₆

Characteristic	Characteristics — Data elements	Data discriminator	Notes
Physical characteristics	 Density Solid, liquid, gas Mechanical properties (e.g., tensile strength, hardness, ductility, etc.) 	Low	Density expressed in g/cm ³
Morphology/ Crystallography	 Lattice structure Aspect ratio Porosity Colour Particle size (and distribution) Shape Surface features (e.g. scratches) 	Medium	Descriptive shape of individual grains (e.g. round, oval, square, smooth, rough)
Chemical form	Compound name	High	
Uranium concentration	 Uranium concentration Uranium concentration uncertainty 	Medium	Expressed in g/g
Trace element	 Trace element concentration Trace element concentration uncertainty 	Medium	Typically expressed in µg/g sample
Uranium isotopes	 Isotope ratios (²³⁸U in the denominator) Isotope ratio uncertainty 	High	²³⁵ U/ ²³⁸ U, ²³⁴ U/ ²³⁸ U, ²³⁶ U/ ²³⁸ U, ²³³ U/ ²³⁸ U, ²³² U/ ²³⁸ U
Process information (In context of how it affects material)	Process typeDate range for productionLocation of processing site	Medium	Process description (e.g. fluorination),location of plant and dates of production
Container	Container typeVolumeDimensions	High	Primarily for UF ₆

1 TABLE 4. URANIUM ENRICHMENT (UF6, UF4, UCl4, U METAL)

TABLE 5. URANIUM FUEL FABRICATION (INCLUDING NATURAL URANIUM, DEPLETED URANIUM, LOW ENRICHED URANIUM AND HIGHLY ENRICHED URANIUM): UO2, U308, ALLOY AND MATRIX FUELS, PELLETS, RODS/PLATES, ELEMENTS, SCRAP AND WASTE

Characteristic	Characteristics — Data elements	Data discriminator	Notes
Physical characteristics	 Description for fuel (pellet, pebble, etc.) and dimensions (for rods, plates, etc.) Density Solid, liquid, gas Mechanical properties (e.g., tensile strength, hardness, ductility, etc.) Cladding information (type) Fuel coating information 	High	Density expressed in g/cm ³ Plans, technical drawings or photographs of rods, plates and pellets
Serial number	• Serial number	High	Could be individual serial numbers or ranges of serial numbers associated with a particular design
Morphology/ Crystallography (for fuel and cladding material)	 Lattice structure Aspect ratio Porosity Colour Particle size (and distribution) Shape Surface features (e.g. scratches) 	Medium	
Chemical form	Compound nameType (e.g., alloy or matrix)	High	
Elemental concentrations	 Element concentration Element concentration uncertainty 	Medium	Expressed in g/g sample To include U and burnable poisons
Trace element	 Trace element concentration Trace element concentration uncertainty 	Medium	Typically expressed in µg/g sample
Uranium isotopes	 Isotope ratios (²³⁸U in the denominator) Isotope ratio uncertainty 	High	²³⁵ U/ ²³⁸ U, ²³⁴ U/ ²³⁸ U, ²³⁶ U/ ²³⁸ U, ²³³ U/ ²³⁸ U, ²³² U/ ²³⁸ U
Process information (In context of how it affects material)	 Process type Date range for production Location of processing site	High	Process description, location of plant and dates of production

TABLE 6. MIXED OXIDE FUEL (MOX) FUEL FABRICATION: POWDER, PELLETS, RODS, SCRAP AND WASTE

Characteristic	Characteristics – Data elements	Data discriminator	Notes
Physical characteristics	 Description for fuel (pellet, pebble, etc.) and dimensions (for rods, plates, etc.) Density Solid, liquid, gas Mechanical properties (e.g., tensile strength, hardness, ductility, etc.) Cladding information (type) Fuel coating information 	High	Density expressed in g/cm ³ Plans, technical drawings or photographs of rods, plates and pellets
Serial number	• Serial number	High	Could be individual serial numbers or ranges of serial numbers associated with a particular design
Morphology/ Crystallography (for fuel and cladding material)	 Lattice structure Aspect ratio Porosity Colour Particle size (and distribution) Shape Surface features (e.g. scratches) Plutonium homogeneity (i.e. distribution within the matrix) 	Medium	
Chemical form	• Compound name (for U and Pu components)	High	
Elemental concentrations	 Element concentration Element concentration uncertainty 	High	Expressed in g/g sample To include U and Pu burnable poisons Expressed in g/g sample
Trace element	 Trace element concentration Trace element concentration uncertainty 	Medium	Typically expressed in µg/g sample
Uranium isotopes	 Isotope ratios (²³⁸U in the denominator) Isotope ratio uncertainty 	High	²³⁵ U/ ²³⁸ U, ²³⁴ U/ ²³⁸ U, ²³⁶ U/ ²³⁸ U, ²³³ U/ ²³⁸ U, ²³² U/ ²³⁸ U
Plutonium isotopes	 Isotope ratios (²³⁹Pu in the denominator) Isotope ratio uncertainty 	High	²³⁸ Pu/ ²³⁹ Pu, ²⁴⁰ Pu/ ²³⁹ Pu, ²⁴¹ Pu/ ²³⁹ Pu, ²⁴² Pu/ ²³⁹ Pu
Process information (In context of how it affects material)	 Process type Date range for production Location of processing site	High	Process description, location of plant and dates of production

TABLE 7. FRESH NUCLEAR FUEL (ASSEMBLIES, ELEMENTS FOR POWER OR RESEARCH REACTORS; ISOTOPE PRODUCTION CAPSULES)

Characteristic	Characteristics — Data elements	Data discriminator	Notes
Physical characteristics	 Description for fuel assembly and dimensions (for rods, plates, etc.) Cladding information (type) Assembly structure 	High	Plans, technical drawings or photographs of nuclear fuel assemblies
Serial number	• Serial number	High	Could be individual serial numbers or ranges of serial numbers associated with a particular design
Chemical form	Compound name	High	
Elemental concentrations	 Element concentration Element concentration uncertainty 	High	Expressed in g/g sample To include U and Pu burnable poisons Expressed in g/g sample
Trace element	 Trace element concentration Trace element concentration uncertainty 	Low	Typically expressed in µg/g sample
Uranium isotopes	 Isotope ratios (²³⁸U in the denominator) Isotope ratio uncertainty 	High	²³⁵ U/ ²³⁸ U, ²³⁴ U/ ²³⁸ U, ²³⁶ U/ ²³⁸ U, ²³³ U/ ²³⁸ U, ²³² U/ ²³⁸ U
Plutonium isotopes	 Isotope ratios (²³⁹Pu in the denominator) Isotope ratio uncertainty 	High	²³⁸ Pu/ ²³⁹ Pu, ²⁴⁰ Pu/ ²³⁹ Pu, ²⁴¹ Pu/ ²³⁹ Pu, ²⁴² Pu/ ²³⁹ Pu
Process information (In context of how it affects material)	 Process type Date range for production Location of processing site 	High	Process description, location of plant and dates of production

Characteristic	Characteristics — Data elements	Data Discriminator	Notes
Physical characteristics	 Description for fuel assembly and dimensions (for rods, plates, etc.) Cladding information (type) Assembly structure Surface oxide thickness 	High	Plans, technical drawings or photographs of nuclear fuel assemblies
Serial number	• Serial number	High	Could be individual serial numbers or ranges of serial numbers associated with a particular design
Chemical form	 Compound name 	High 🧄	
Elemental concentrations	 Element concentration Element concentration uncertainty 	High	Expressed in g/g sample To include U and Pu burnable poisons Expressed in g/g sample
Trace element	 Trace element concentration Trace element concentration uncertainty 	Low	Typically expressed in µg/g sample
Uranium isotopes	 Isotope ratios (²³⁸U in the denominator) Isotope ratio uncertainty 	High	²³⁵ U/ ²³⁸ U, ²³⁴ U/ ²³⁸ U, ²³⁶ U/ ²³⁸ U, ²³³ U/ ²³⁸ U, ²³² U/ ²³⁸ U
Plutonium isotopes	 Isotope ratios (²³⁹Pu in the denominator) Isotope ratio uncertainty 	High	 ²³⁸Pu/²³⁹Pu, ²⁴⁰Pu/²³⁹Pu, ²⁴¹Pu/²³⁹Pu, ²⁴²Pu/²³⁹Pu
Irradiation history	 Reactor type Burn-up Assembly power history Operating records Load and discharge dates 	High	

1 TABLE 8. IRRADIATED (SPENT) NUCLEAR FUEL

TABLE 9. REPROCESSING (PLUTONIUM NITRATE, URANYL NITRATE, PLUTONIUM OXIDE, URANIUM OXIDE, MIXED OXIDE, OTHER ACTINIDES)

Characteristic	Characteristics — Data elements	Data discriminator	Notes
Physical characteristics	 Description for fuel (pellet, pebble, etc.) and dimensions (for rods, plates, etc.) Density Solid, liquid, gas Mechanical properties (e.g., tensile strength, hardness, ductility, etc.) Cladding information (type) Fuel coating information 	Low	Density expressed in g/cm ³
Chemical form	Compound name	High	
Elemental concentrations	Element concentrationElement concentration uncertainty	High	Expressed in g/g sample
Trace element	 Trace element concentration Trace element concentration uncertainty 	High	Typically expressed in µg/g sample
Uranium isotopes	 Isotope ratios (²³⁸U in the denominator) Isotope ratio uncertainty 	High	$\begin{array}{r} & 2^{35} \mathrm{U} / ^{238} \mathrm{U} , \\ & 2^{34} \mathrm{U} / ^{238} \mathrm{U} , \\ & 2^{36} \mathrm{U} / ^{238} \mathrm{U} , \\ & 2^{33} \mathrm{U} / ^{238} \mathrm{U} , \\ & 2^{32} \mathrm{U} / ^{238} \mathrm{U} \end{array}$
Plutonium isotopes	 Isotope ratios (²³⁹Pu in the denominator) Isotope ratio uncertainty 	High	²³⁸ Pu/ ²³⁹ Pu, ²⁴⁰ Pu/ ²³⁹ Pu, ²⁴¹ Pu/ ²³⁹ Pu, ²⁴² Pu/ ²³⁹ Pu
Process information (In context of how it affects material)	 Process type Date range for production Location of processing site 	High	Process description, location of plant and dates of production

TABLE 10. RADIOACTIVE WASTE PROCESSING, HANDLING, AND STORAGE (HIGH LEVEL RADIOACTIVE WASTE)

Characteristic	Characteristics — Data elements	Data discriminator	Notes
Serial number	• Serial number	High	Could be individual serial numbers or ranges of serial numbers associated with a particular design
Physical characteristics	 Activity Density Solid, liquid, gas (General description of matrix) Mass Dimensions 	High	Density expressed in g/cm ³ Total activity or dose rate
Elemental concentrations	 Element concentration Element concentration uncertainty 	High	Expressed in g/g sample
Major isotopes	Isotope nameIsotope activityIsotope activity uncertainty	High	Expressed as activities in Bq, include reference date
Process information (In context of how it affects material)	 Process type Date range for production Location of processing site	High	Process description, location of plant and dates of production
Container	Container typeVolumeDimensions	High	

Characteristic	Characteristics – Data elements	Data discriminator	Notes
Description of the source/package	 Source type (emission type, use type) Quantity Description and dimensions Encapsulation or cladding Serial number Radiograph/photograph Shipping/receiving history 	High	Identifying information from the supplier
Source activity information	 Activity Reference date of the activity Neutron intensity/yield 	High	Activities in Bq, [neutron/sec] with a radioactive decay reference date
Chemical form	Compound name	High	
Elemental concentrations (in matrix)	 Element concentration Element concentration uncertainty 	High	Expressed in g/g sample
Major and minor isotopes	Isotope nameIsotope activityIsotope activity uncertainty	High	Expressed as activities in Bq, include reference date

1 TABLE 11. TYPES OF RADIOACTIVE SOURCES: SEALED

Characteristic	Characteristics — Data elements	Data discriminator	Notes
Description of the source/package	 Source type (emission type, use type) Quantity Description and dimensions Radiograph/photograph Shipping/receiving history 	High	Identifying information from the supplier
Source activity information	ActivityReference date of the activity	High	Activities in Bq, with a radioactive decay reference date
Chemical form	Compound name	High	$\langle \langle \rangle \rangle = \langle \rangle \langle \rangle \rangle \langle \rangle \langle \rangle \rangle$
Elemental concentrations	Element concentrationElement concentration uncertainty	High	Expressed in g/g sample
Major and minor isotopes	Isotope nameIsotope activityIsotope activity uncertainty	High	Expressed as activities in Bq, include reference date
	<i>C</i>		

1 TABLE 12. TYPES OF RADIOACTIVE SOURCES: UNSEALED

1 7. COMPARATIVE ANALYSES WITH A NATIONAL NUCLEAR FORENSICS LIBRARY

To determine if a seized material is consistent with a State's holdings of nuclear and other radioactive material, a national nuclear forensics library enables forensic associations of the seized material with classes or families of materials with known signatures. However, unlike fingerprint analysis, it is often impractical for nuclear forensics to rely on sample-to-sample matching. Rather, nuclear forensics associates the seized sample with classes of material characterized by combinations of known quantifiable features (e.g. isotope ratios, chemical composition, impurities, physical characteristics). A hypothetical example of this association is illustrated in Fig. 4.

9

FIG 4. Use of multi-variate analysis (pattern classification) to associate a hypothetical seized sample
 with existing signature fields. The hypothetical seized material may possibly be consistent with cluster 1
 or 2, but it is likely not consistent with cluster 3. Using existing information on nuclear or other
 radioactive material from a national nuclear forensics library, multi-variate analyses are used to include
 or exclude seized sample measurements relative to existing material families (classes). In nuclear
 forensics, associating with existing class information is the key, not sample-to-sample matching.

16 In this example, statistical techniques are used to associate discriminating features of hypothetical seized 17 material with three known classes designated by the blue, red, and green fields. As shown in Fig. 4, 18 features of the seized material may be consistent with characteristics represented by the blue and red 19 clusters, but it is unlikely that the seized material is consistent with the green cluster. Thus, class 20 information represented by the green cluster may be excluded from further consideration, and as a result, 21 the investigative leads can be narrowed. As illustrated in Fig. 4, a national nuclear forensics library may contain information that enables multiple evaluations to be performed that compare seized materials with known classes of materials. Taken together, these multiple evaluations aim to determine the appropriate signature combinations that identify a material as consistent or inconsistent with a State's holdings. Data evaluations using class associations are iterative deductive processes that enable States to formulate conclusions that exclude or include material produced, used or stored in the State from further consideration during a nuclear forensic investigation.

8

8. APPLICATION OF A NATIONAL NUCLEAR FORENSICS LIBRARY

9 In the instance of a nuclear security event in a State, a national nuclear forensics library would facilitate 10 the ensuing investigation. Fig. 5 illustrates an example involving seized illicit material where a State's 11 law enforcement agency would need to understand the characteristics of that material to assist in their 12 investigation. The library administrator identifies the material with the possible assistance of the Domain

13 Expert(s) and responds to the query with information on what the seized material is and/or is not.

FIG 5. Schematic illustration of the application of a national nuclear forensics library in a hypothetical
 domestic smuggling incident. A national nuclear forensics library is used to forensically associate (or
 exclude) -seized material with State's material holdings to determine if the seized material is or is not
 consistent with its material holdings.

9. INTERNATIONAL DIRECTORY OF STATES WITH A NATIONAL NUCLEAR FORENSICS LIBRARY

1 2

A proposed international directory of States that have developed and maintain a national nuclear forensics library identifies national points-of-contact who can communicate through official channels concerning information about the national library. Cooperation between States during an investigation of a nuclear security event by exchanging queries about the material maintained in a national nuclear forensics library, without divulging further information on the content of the library, is an effective means to expand the knowledge base of materials information available to States during the course of an investigation.

9 The national point-of-contact (POC) of the national nuclear forensics library receives and replies to 10 requests about information in a national nuclear forensics library from other States. The national point-of-11 contact may be an individual or a team and may be same as the national library administrator. The 12 national point-of-contact should have sufficient technical expertise and comprehension to understand the

13 information provided by the national library administrator.

14 The development of a proposed international directory of States with a national nuclear forensics library 15 facilitates cooperation among governments investigating a transnational nuclear security event (e.g., diversion, illicit movement, or sale of nuclear or other radioactive materials out of regulatory control). 16 17 Voluntary participation in the proposed international directory of national POCs i) identifies States that 18 maintain a nuclear forensics library and ii) their national administrator who facilitates cooperation 19 between States. The national POC of the national nuclear forensics library would serve as an interface to 20 the national library from outside the State through official channels concerning nuclear and other 21 radioactive materials in the library.

It should be emphasized that a State responding to a query is in no way obligated to share any information from their library, or even the results of a query. Information that might be shared between governments using their national library in the course of nuclear security event may not involve any sensitive or proprietary information contained in the national nuclear forensics library, unless appropriate arrangements are put in place to share sensitive or proprietary information. Even without sharing results, the act of asking another State to query their library has the potential to enhance overall nuclear security.

28 29

10. INTERNATIONAL COOPERATION AND NATIONAL NUCLEAR FORENSICS LIBRARIES

The conceptual application of a national nuclear forensics library in a hypothetical nuclear smuggling incident is schematically illustrated in Fig. 6. This process is equally relevant to radioactive material other than nuclear material found out of regulatory control. A State with seized illicit nuclear material conducts its own nuclear forensic analysis or may request analysis from a bi-lateral partner. With the analytical

results and using a national nuclear forensics library, master index, and domain expertise, the library administrator determines that the seized material is not consistent with the content of their library. Through official channels, the national POC of the national nuclear forensics library may contact another State with a query about the seized material to determine if the material is consistent with the content of their national nuclear forensics library. If the material is consistent as determined by domain expertise, the two States may choose to work together through official channels to resolve the origin and history of the seized material and address any nuclear security vulnerabilities.

FIG 6. Schematic illustration of the application of a national nuclear forensics library in a hypothetical nuclear smuggling incident. A national nuclear forensics library is used to forensically associate (or exclude) - seized material with State's material holdings and thus refine investigative leads. However,
Country A and Country B work through national points of contact for their national nuclear forensics library and do not share the contents of their respective national libraries.

1

11. INTERNATIONAL OUTREACH AND ASSISTANCE

Security events involving nuclear and other radioactive material are often transnational resulting from legal commerce as well as unauthorized transfers. International security is strengthened through cooperation between States. The IAEA will, on request, assist cooperation between States through programmes of research, technical guidance, outreach and training.

6 Such cooperation improves the identification of priority signatures, nuclear forensic analysis and 7 interpretation, as well as outreach to promote the value of developing a national nuclear forensic library. 8 The value of a national nuclear forensic library to a State is further enhanced by participation in the 9 proposed international directory of national POCs of a national nuclear forensics library. Such 10 participation enables States to provide and receive assistance in ensuring timely, comprehensive 11 resolution of a nuclear security event.

12 As noted, a national nuclear forensic library is commensurate with the size and the complexity of a State's 13 nuclear and other radioactivity material holdings. For this reason, data pertaining to material used, 14 produced, or stored within a State may be incomplete relative the data characteristics set forth in Tables 1 15 through 12. Data gaps will identify which signatures are missing and the need to obtaining missing 16 information. With comprehensive information, States can optimize the library for comparisons to ensure 17 the security of nuclear and other radioactive materials for which they are responsible. The IAEA will 18 assist States, upon request, in outreach and training supporting their development of a national nuclear 19 forensics library.

20

APPENDIX I: HYPOTHETICAL REPRESENTATIONS OF LIBRARY DATA FOR THREE DISTINCT MATERIALS

These hypothetical three library data representations are only a guide of what a subset of a library entry
might contain. These data are not the only examples of what an entry in a national nuclear forensics
library should include or what the library should look like.

6 It is likely that entries in a library will include fields appropriate to all categories of nuclear and other
 7 radioactive material. The fields will cover both general information and technical information. These

8 hypothetical tables represent subsets of all the fields in library entries.

HYPOTHETICAL LIBRARY DATA SUMMARY: Sr-90 SEALED SOURCE

MATERIAL: Sr-90 Sealed Source		DATA RECORD DATE: 18 October 2012		
CUSTODIAN/OWNER:		ANALYTICAL LABORATORY:		
Tropical Medical Research Institute		Not Applicable; Vendor D	ata	
4371 Waterfall View Drive				
Rainforest, Iridium Is	land 20012			
COUNTRY OF ORIGIN:		SUPPLIER:		
Polar Country		Polar Commercial RADTE	CH, Inc.	
		3001 Nice Ice Lane	(0022	
CHIDDED /CADDIED.		Glacier Village, Articiano,	60032	
SHIPPER/CARRIER:	Waybill No. 40E12422	Vender Data Model V7AE		
DATE INFORMATION	ACOURED:	vendor Data: Model XLAP90-SK		
28 June 2012	ACQUIRED.	Tronical RAD Surplus Ltd	Tropical PAD Surplus Ltd	
20 June 2012		Tropical ICID Salpius, Le		
CHARACTERISTIC	DATA ELEMENT	Sr-90 SEALED SOURCE	DATA DISCRIMINATOR	
		Al alloy backing		
	Packaging Type	covered with 0.05mm		
		thick Al foil		
		-11		
		K)		
SUPPLIER		- 1		
INFORMATION	Drawings / Photographs		High	
		- Lisian		
	Description and	Active core deposited		
	Dimensions	d=143 mm x h=15 mm		
		Active core deposited		
		on Al alloy backing		
	Encapsulation or	and covered by		
DECOUDTION OF	Clauding	0.05mm thick Al foil,		
DESCRIPTION OF		d=143mm x h=1.5mm	High	
JOOKCE / I ACKAGE	Serial Number	5C0-(801-218)		
	Radiograph / Photograph	Not Provided		
	Shipping / Receiving	Ship Any Planet Ltd.		
	History	Waybill No. 40512432		
	Activity (Bq)	8.0E+1 to 2.1E+8 GBq		
PHYSICAL	Reference Date of Activity	31 March 2012		
CHARACTERISTICS	dimonsions	surface 112mm	High	
OF SOURCE	Sorial Number	500-(801-218)		
	Radiograph / Photograph	Not Provided		
CHEMICAL FORMS	Compound Name	90Sr/90Y	High	
	Element Name	Strontium / Yttrium		
ELEMENT	Element Concentration	Not Provided	High	
CONCENTRATION	Uncertainty	Not Provided	0	
10050550	Isotope Name	⁹⁰ Sr/ ⁹⁰ Y	High	
ISOTOPES	Activity, Uncertainty	Not Provided		

HYPOTHETICAL LIBRARY DATA SUMMARY: HEU PELLET

GENERAL INFORMATION	CHARACTERISTIC	CHARACTERISTICS- DATA ELEMENTS	SAMPLE A—HEU RR3	DATA DISCRIMINATOR
MATERIAL: Sample A- HEU RR3		• Rod/ plate/ pellet information	4.5808-5.0915g	
DATA RECORD DATE: 18 October 2012		• Density (g/cm ³)	No density given for pellet sample, only for angular inclusions	
CUSTODIAN/OWNER:		 Surface roughness 	Angular inclusions	
7482 Fantasy Dr.		• Dimensions of nuclear fuel pellets	Large cylindrical mass of inner diameter ~32mm (~44mm actual)	
ANALYTICAL	PHYSICAL	• Cladding (material, thickness)	Not Provided	High
LABORATORY: Dunlap Lab COUNTRY OF ORIGIN: Cesium Islands SUPPLIER: Uran-E-Um, LLC 892 Sell It Dr. Geomat Cesium Islands	RATORY: Lab TRY OF N: Islands JER: -Um, LLC II It Dr.	• Plans/drawing	Pires lips is an	
20012 BATCH ID AND	ITEM DESCRIPTION MORPHOLOGY	• Serial number format	Hollow Log 1958	High
PROCESS DATE: Hollow Log 1943, 8 April		• Grain/particle size	0.0086 ±0.0035 (mm)	
2003		• Shape grains	Angular, dendritic, cuboidal	Medium
SHIPPER/CARRIER: Material Movers, Ltd		• Colour	metallic silver	
Waybill No. V283HG4 DATE INFORMATION	CHEMICAL FORM	• Compound name	Highly Enriched Uranium	High
ACQUIRED: 25 April 2011		• Element name	U	
[]	ELEMENTAL	• Element concentration	Total all %U-isotopes, get 100% U in sample, not measured	Medium
<		• Uncertainty	N/A	

HYPOTHETICAL LIBRARY DATA SUMMARY: HEU PELLET

	• Trace element name	Pu, Np, Al, B, C, Ca, Co, Cr, Cu, Er, Fe, Mg, Mn, Mo, Ni, P, Pd, Re, W, Zr	
TRACE ELEMENT CONCENTRATION	• Trace element concentration (µg/g)	Pu: 0.0063-0.0081, Al: 10-215, B: 7-10, C: 260- 1700, Ca: 3.4-56.2, Co: 0.59-1.74, Cr: 9.99-115, Cu: 8.0-37.3, Er: 0.16-8.23, Fe: 77.8-220, Mg: 0.22-34.9, Mn: 3.78-22.5, Mo: 51-380, Ni: 38- 164, P: 10.1, Pd: 0.31-3, Re: 17.5-18, W: 34.2- 69, Zr: 1.62-2200, Np-237:4.41-5.5 (µg/g)	Medium
	• Uncertainty	Pu: 0.00024-0.0057 (μg/g)	
URANIUM ISOTOPIC	• Isotopic ratios (²³⁸ U in the denominator)	Ratios not given, % each isotope given 238U: 5.49-6.35, 235U: 92.5-93, 234U: 0.89-1.1, 236U: 0.346-0.3884, 233U: 32.9E-6-0.0006, 232U: 0.1-1.25E-8 (atom %)	High
COMPOSITION	• Isotope abundance uncertainty	238U: 0.0026-0.5, 235U: 0.004-2.64, 234U: 0.0004-0.09, 236U: 0.00056-0.5, 233U: 4.4E-6- 0.0003, 232U: 0.03-0.3E-8 (atom %)	e
	Process type	Cast on May 22, 2003	
PROCESS INFORMATION	• Date and duration of the process	3 parent items all briquettes formed from machine turnings (made Hollow log 1943 cast on Apr 8, 2003) + pallet scrap (consolidation item 1046 created Mar 31, 2003)	High
	• Location of processing site	DOE NNSA Y-12 NSC	

HYPOTHETICAL LIBRARY DATA SUMMARY: NUCLEAR FUEL ASSEMBLY

MATERIAL: LEU I	Fuel Assembly	DATA RECORD DATE: 18	October 2012
BATCH ID AND PROCESS DATE: March 1959		ANALYTICAL LABORATORY: Not Applicable, Vendor Data	
COUNTRY OF ORIGIN: Articland		SUPPLIER: General Electric Co.	
CUSTODIAN/OWNER	•	SHIPPER/CARRIER:	
Electro-Nuclear Inc.		Move Your Fuel, Inc	
Steady Power Avenue		2930 Transport Lane	
Glowin City, Articland 82	2934	Star Ice City, Articland 60032	
DATA VETTING: Vendor Data: Assembly 2	K320	DATE INFORMATION ACQUIE Archived Information, March 1959	RED:
CHARACTERISTIC	CHARACTERISTICS — DATA ELEMENTS	DRESDEN (USA), MARCH 1959	DATA DISCRIMINATOR
	Density of fuel pellets	Not Provided	
	· Dimensions	0.494 d x0.5 high (in) form segment, 0.563 o.d. x 28 long (in), 4 segments form a rod 117 long (in)	
	• Cladding (material, thickness)	Zircaloy-2, 0.03 (in)	
	Kod information	6x6 fuel rods in square assembly	
PHYSICAL CHARACTERISTICS	• Assembly structure (Plans, schematic drawings or photographs)	TOO THOT USSCHIDTEDS	High
SERIAL NUMBER	• Serial number	Not Provided	High
CHEMICAL FORM	Compound name	UO ₂	High
ELEMENT CONCENTRATION	Element name Element concentration Uncertainty	Not Provided	High
TRACE ELEMENT CONCENTRATION	Trace element name Trace element concentration Uncertainty	Not Provided	Low

HYPOTHETICAL LIBRARY DATA SUMMARY: NUCLEAR FUEL ASSEMBLY

	• Isotope ratios (²³⁸ U in	Only enrichment given: 1.5%	
ISOTODIC	the denominator)	Enriched U-235	Uiah
COMPOSITION	• Isotope ratio	Not Provided	Ingn
COMIOSITION	uncertainty	Not Plovided	
DI LITONILIM	• Isotope ratios (²³⁹ Pu,		
ISOTODES EOD	in the denominator)	Not Provided	High
MOX FUEL	Isotope ratio	Not i lovided	
	uncertainty		
PROCESS INFORMATION	\cdot Date and duration of	Not Provided	
	the process		High
	Location of	Conoral Electric Co	
	processing site	General Electric Co.	

APPENDIX II: DESCRIPTION OF UNITS FOR MATERIAL CHARACTERISTICS

Using a standardized set of units for nuclear and radioactive material characteristics in a national nuclear forensics library facilitates rapid comparative analyses. While this standardization will likely entail converting units from those typically used to describe a particular characteristic, the conversion has the advantage of facilitating comparability between all materials in a library. Additionally, if unit conversions are completed prior to entering data into a library, it provides the opportunity to verify conversions are done correctly, and reduces the risks of unit conversion errors during library queries.

The following is a list of recommended units for describing material characteristics in a national nuclear forensics library. Generally, they are SI or CGS units, and were selected for ease of comparing a diverse set of materials from across the fuel cycle and a wide variety of radioactive sources. It is up to each State to decide if these units are appropriate for their library, and in some cases, where a State only has a very limited number of materials; it might be simpler to use alternative units. For example, if a State only mines uranium ore, it might be more appropriate to express uranium concentration in ore in units of g/tonne or g/kg instead of the recommended units of g/g, which are generally more useful for comparing uranium concentrations for materials from the rest of the nuclear fuel cycle.

TABLE II-1. RECOMMENDED UNITS FOR DESCRIBING MATERIAL CHARACTERISTICS IN A NATIONAL NUCLEAR FORENSICS LIBRARY

Characteristic	Recommended Units	Rational
Elemental Concentrations for Major Constituents	g/g	Generally used for elements with concentrations >0.1% by weight. Alternatively, it can include all elements intended to be a part of a material, for example all of the elements present in a metal alloy. For most fuel cycle materials or large radioactive sources, expressing concentrations in g element / g material works well.
Trace Element Concentrations	µg/g	Generally used for elements with concentrations <0.1% by weight. Alternatively, trace elements are sometimes defined as those elements that are impurities, or elements present in a material but not intentionally added.
Uranium isotopic compositions	Atom ratios: ²³² U/ ²³⁸ U, ²³³ U/ ²³⁸ U, ²³⁴ U/ ²³⁸ U, ²³⁵ U/ ²³⁸ U, ²³⁶ U/ ²³⁸ U	While uranium isotopic compositions are often expressed as atom percents, mass percents, or even just 235U enrichment level, these units are not ideal for library use. By using ratios, all uranium materials in a library are directly comparable, regardless of how many isotopes were determined in a particular material. If using atom or mass percents, materials with differing numbers of isotopes measured require isotopic compositions to be renormalized based on the sample with the fewest isotopes measured before they can be compared.

Recommended Units	Rational
Atom ratios: ²³⁸ Pu/ ²³⁹ Pu, ²⁴⁰ Pu/ ²³⁹ Pu, ²⁴¹ Pu/ ²³⁹ Pu, ²⁴² Pu/ ²³⁹ Pu,	While plutonium isotopic compositions are often expressed as atom percents, mass percents, these units are not ideal for library use. By using ratios, all plutonium materials in a library are directly comparable, regardless of how many isotopes were determined in a particular material. If using atom or mass percents, materials with differing numbers of isotopes measured require isotopic compositions to be renormalized based on the sample with the fewest isotopes measured before they can be compared.
g/cm ³	Alternately, the SI unit of kg/m ³ would also be appropriate.
μm	Depending on the sophistication of the library, this could capture average particle size, or complete histograms of particle size distributions.
m ² /g	Typical units for porosity or specific surface area measurements using BET and similar methods.
Per mil (‰)	Expressed as δ^{13} C
Per mil (‰)	Expressed as δ^{15} N
Per mil (‰)	Expressed as $\delta^{15}O$
Atom ratio ⁸⁷ Sr/ ⁸⁶ Sr	
Atom ratios ²⁰⁸ Pb/ ²⁰⁴ Pb, ²⁰⁷ Pb/ ²⁰⁴ Pb, ²⁰⁶ Pb/ ²⁰⁴ Pb,	
E _{Nd}	
Bq	Used for radionuclide activity in radioactive sources
Bq/g	The activity of a radionuclide relative to the total mass of the element present (e.g. $50Bq {}^{60}Co / g Co$). Used to describe the radiochemical purity of radionuclides
n/s	Used to express the intensity of neutrons from neutron sources $e_{g} = \frac{2^{52}Cf}{4} \text{ or } \frac{2^{41}}{4} \text{ mBe sources}$
	Atom ratios: ²³⁸ Pu/ ²³⁹ Pu, ²⁴⁰ Pu/ ²³⁹ Pu, ²⁴¹ Pu/ ²³⁹ Pu, ²⁴² Pu/ ²⁰¹ Pu,

REFERENCES

- 1. INTERNATIONAL ATOMIC ENERGY AGENCY, Nuclear Forensics Support, IAEA Nuclear Security Series No. 2, IAEA, Vienna (2006).
- INTERNATIONAL ATOMIC ENERGY AGENCY, Nuclear Security Recommendations on Nuclear and Other Radioactive Material out of Regulatory Control, IAEA Nuclear Security Series No. 15, IAEA, Vienna (2011).
- 3. JOINT COMMITTEE FOR GUIDES IN METROLOGY, Evaluation of measurement data Guide to the expression of uncertainty in measurement, JCGM 100-2008 (2008).

DEFINITIONS

batch. A batch is the production of material in discrete runs or lots.

custodian. A custodian is the keeper or steward of the material.

database. A database is a searchable collection of data or information, usually but not necessarily, in an electronic/digital format.

domain expertise. Domain expertise (provided by an individual expert or specialists) assists the library administrator in identifying and organizing information from a specific nuclear fuel cycle stage or isotope production type for radioactive sources. Such expertise will also assist in analysing the information for patterns or trends that enhance a State's ability to determine distinguishing features about its own material holdings.

library administrator. The library administrator may be an individual or a team in a State with access to the domain expertise represented by the national nuclear forensics library enabling routine and comprehensive access to the library contents. The library administrator has overall responsibility for gathering information from relevant organizations, institutes and facilities for inclusion in the national nuclear forensics library.

materials master index. The material master index provides a summary of all information in the library, and can be used by the library administrator to locate specific information and also contact the appropriate technical expert.

morphology (**materials science**). Morphology is the study of shape, size, texture and phase distribution of physical objects.

national point-of-contact (POC) of a national nuclear forensics library Through official channels the national point-of-contact of the national nuclear forensics library voluntarily receives and replies to requests about information in a national nuclear forensics library from other States.

nuclear material. Nuclear material is defined to by any material that is either special fissionable material or source material as defined in Article XX of the IAEA Statute.

nuclear security event. A nuclear security event is an event that has potential or actual implications for nuclear security that must be addressed.

out of regulatory control. The phrase "out of regulatory control" is used to describe a situation where nuclear or other radioactive material is present without an appropriate authorization, either because controls have failed for some reason, or they never existed.

radioactive material. A radioactive material is any material designated in national law, regulation, or by regulatory body as being subject to regulatory control because of its radioactivity.

radiochronometry. Radiochronometry is the use of radioactive decay to determine the time since the last separation of progenies from the "parent" material (and thus, the "age").

seized material. Seized material is material encountered outside of regulatory control that is now under the control of the competent authorities.

signature. A signature is a characteristic or a set of characteristics of a given sample that enables that sample to be distinguished, by way of either exclusion or inclusion.

trace element. A trace element is an element in a sample that has an average concentration of less than 1000 microgram / gram (μ g/g) or 0.1% of the matrix composition.

GRAFFICAMAR