

# Rad. Waste Management in Brazil

#### IAEA – Workshop on Sustainable Management of Disused Sealed Radioactive Sources (DSRS)

*Lisbon - Portugal October 2010* 

Manoel M. O. Ramos

**Contributors:** Antonio Fernando Costa, Claudia Wailant, Elizabeth May, Manoel Ramos, Marcelo Mallat<sup>+</sup>, Marco Aurélio Leal, Nerbe Ruperti, Paulo Heilbron Filho, Rubemar Ferreira, Vera Lúcia Cavalcante, <u>Walter Mendes</u>.

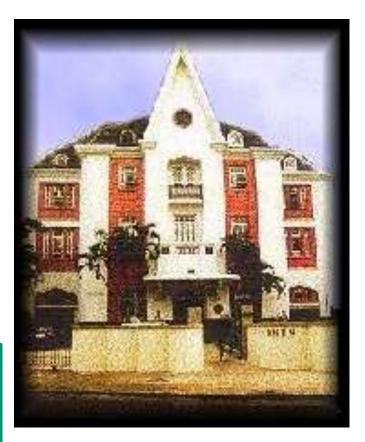
<sup>+</sup>27-Sept-2010



# National Report of Brazil - 2008

for The 3rd Review Meeting of the JOINT CONVENTION ON THE SAFETY OF SPENT FUEL MANAGEMENT AND ON THE SAFETY OF RADIOACTIVE WASTE MANAGEMENT




Legal Responsibilities

- CNEN was created in 1956 (Decree 40.110 of 10/10/1956) to be responsible for all nuclear activities in Brazil.
- Its responsibilities were established by the Law 4.118/62 amended by Laws 6.189/74 and 7.781/89.
- Thereafter, CNEN became the Regulatory Body for the nuclear field in Brazil, in charge of regulating, licensing and controlling nuclear energy uses.

Preliminary Safety Analysis Report (PSAR) → CNEN

Environmental Impact Assessment (EIA) → IBAMA (Environmental Regulatory Body)

 Nuclear electricity generation was transferred to a state-owned company (Eletrobrás - 1961).





Legal Responsibilities

## CNEN`s Responsibilities <u>Related To Radioactive</u> <u>Waste</u> - Law 7.781:

The Law 7.781 of 16 December 1989, attributed to CNEN the responsibility for the final disposal of radioactive wastes.



Legal Responsibilities

## Specific Waste Law - Law 10.308:

Law n. 10.308 of November 20, 2001 established the rules for the siting, licensing, operation and regulation of radioactive waste facilities in Brazil



Waste Classification

# Waste Classification Adopted in Brazil – Same of IAEA

| Categories                            | Description                                                                                                                                                                                                  |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I - Exempt Waste                      | Activity levels at or below clearence levels, which are based<br>on an annual dose to members of the public of less than 0.01<br>mSv.                                                                        |
| II - Low and Intermediate Level Waste | Activity levels above clearence levels and thermal power below about $2 \text{ kW/m}^3$ .                                                                                                                    |
| II.1 - Short Lived Waste              | Restricted long lived radionuclide concentration (limitation of long lived alpha emitting radionuclides to 4000 Bq/g in individual waste packages and to an overall average of 400 Bq/g (per waste package). |
| II.2 - Long Lived Waste               | Long lived radionuclide concentrations exceeding limitations for short lived waste.                                                                                                                          |
| III-High level Waste                  | Thermal Power about 2kW/m <sup>3</sup> and long-lived radionuclide concentrations exceeding limitations for short-lived waste.                                                                               |

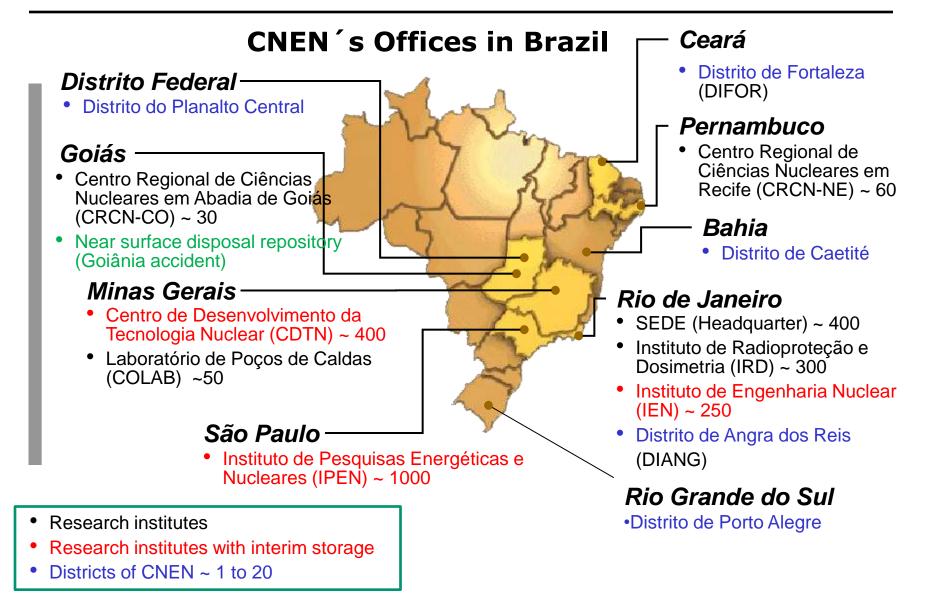


| BRAZILIAN REGULATIONS                                                                                                                                              | ENFORCEMENT                       | IAEA<br>REGULATIONS                                                                  | PRESENT SITUATION                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------|
| NE - 1.10 SEGURANÇA DE SISTEMAS<br>DE BARRAGEM DE REJEITOS<br>CONTENDO RADIONUCLÍDEOS<br>(SAFETY OF MINING WASTE DAM)                                              | D.O.U. 27 DE NOVEMBRO<br>DE 1980  | NO                                                                                   |                                                       |
| NE - 5.01 TRANSPORTE DE MATERIAIS<br>RADIOATIVOS<br>(TRANSPORT OF RADIOACTIVE<br>MATERIAL)                                                                         | D.O.U. 01 DE AGOSTO DE<br>1988    | TS-R-1<br>Regulations for the<br>Safe Transport of<br>Radioactive<br>Material - 2005 | UNDER REVIEW<br>TS-R-1 OF AIEA                        |
| NE - 5.02 TRANSPORTE,<br>RECEBIMENTO, ARMAZENAGEM E<br>MANUSEIO DE ELEMENTOS<br>COMBUSTÍVEIS DE USINAS<br>NUCLEOELÉTRICAS<br>(SPENT FUEL STORAGE AND<br>TRANSPORT) | D.O.U. 17 DE FEVEREIRO<br>DE 2003 | TS-R-1                                                                               |                                                       |
| NE - 6.05 GERÊNCIA DE REJEITOS<br>RADIOATIVOS EM INSTALAÇÕES<br>RADIATIVAS<br>(WASTE MANAGEMENT)                                                                   | D.O.U. 17 DE DEZEMBRO<br>DE 1985  | 111-F , 111-G-1.1,<br>DS292, WS-G-2.7,<br>DS336                                      | UNDER REVIEW<br>111-F , TECDOC 1000, and<br>111-G-1.1 |



| <b>BRAZILIAN REGULATIONS</b>                                                                                                                       | ENFORCEMENT        | IAEA<br>REGULATIONS | PRESENT SITUATION |
|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|-------------------|
| NE - 6.06 SELEÇÃO E ESCOLHA DE<br>LOCAIS PARA DEPÓSITOS DE<br>REJEITOS RADIOATIVOS<br>(SITE SELECTION LLW)                                         | D.O.U. 24 /01/1990 | DS334, 111-G-4.1    |                   |
| NE-6.09 CRITÉRIOS DE ACEITAÇÃO<br>PARA DEPOSIÇÃO DE REJEITOS<br>RADIOATIVOS DE BAIXO E MÉDIO<br>NÍVEIS DE RADIAÇÃO<br>(WASTE ACCEPTANCE CRITERIA ) | D.O.U. 23/09/2002  |                     |                   |
| NE-4.01 REQUISITOS DE SEGURANÇA E<br>PROTEÇÃO RADIOLÓGICA PARA<br>INSTALAÇÕES MÍNERO-INDUSTRIAIS<br>(SAFETY OF MINERAL-INDUSTRIAL<br>FACILITIES)   | D.O.U. 06/01/2005  | WS-G-1.2            |                   |




| BRAZILIAN REGULATIONS             | ENFORCEMENT | IAEA<br>REGULATIONS              | PRESENT SITUATION                            |
|-----------------------------------|-------------|----------------------------------|----------------------------------------------|
| DESOMISSIONING                    |             | WS-G-2.1. WS-G-2.2, WS-<br>G-2.4 |                                              |
| (NO REGULATION AVAILABLE TO DATE) |             |                                  |                                              |
| CONTAMINATED SITES                |             | D\$332                           |                                              |
| (NO REGULATION AVAILABLE TO DATE) |             |                                  |                                              |
| SPECIFIC FOR EFFLUENTS            |             | WS-G-2.3                         | PART IN CNEN-NE-6.05 AN                      |
| (NO REGULATION AVAILABLE TO DATE) |             |                                  | CNEN-NE-3.01                                 |
| COMODITIES                        |             | RS-G-1.7                         |                                              |
| (NO REGULATION AVAILABLE TO DATE) |             |                                  |                                              |
| PRE-DISPOSAL OF HLW,LILW          |             | WS-G-2.5, WS-G-2.6<br>DS353      | PART IN CNEN-NE-6.09 AN<br>PART IN THE DRAFT |
| (NO REGULATION AVAILABLE TO DATE) |             | 20000                            | ALREADY MADE                                 |



| <b>BRAZILIAN REGULATIONS</b>                                                  | ENFORCEMENT | IAEA<br>REGULATIONS | PRESENT SITUATION |
|-------------------------------------------------------------------------------|-------------|---------------------|-------------------|
| BOREHOLES<br>(NO REGULATION AVAILABLE TO DATE)                                |             | D\$335              |                   |
| MONITORIG FINAL DISPOSAL SITES<br>(NO REGULATION AVAILABLE TO DATE)           |             | D\$357              |                   |
| NORM<br>(NO REGULATION AVAILABLE TO DATE)                                     |             | DS352               |                   |
| OPERATION OF DEEP GEOLOGICAL<br>DISPOSAL<br>(NO REGULATION AVAILABLE TO DATE) |             | DS356, 111-G-3.1    |                   |



**Organizational Structure** 





Installations: Nuclear, Medical, Industrial, Research

Two Nuclear Power Plants (RJ) Angra 1 and 2

- Partial license for construction of Angra 3 in March 2010

Two Uranium Mining and Milling Facilities (MG and BA)

One Fuel Element Assembly Facility (RJ)

Four Research Reactors (1 RJ, 2 SP, 1 MG)

One Pilot Scale Fuel Cycle Facility, including a plant for the conversion of uranium to  $UF_6$ , and another for uranium enrichment (SP)



Installations: Nuclear, Medical, Industrial, Research

3750 Medical, Industrial and Research Facilities (all states)

**One Industrial Facility for Processing Monazite Sands (ES)** 

Petroleum Exploitation (NORM) (mainly RJ and BA)

Mining and Milling Activities with U and Th Associated (Niobium, Tantalum, Zirconite, etc - several states)

They all produce waste...



Collecting Radioactive Waste

## RADIOACTIVE WASTES FROM <u>MEDICAL</u>, <u>INDUSTRIAL AND RESEARCH</u> INSTALLATIONS





- The R&D Directorate operates a system aimed at collecting radwaste all over the country. Thousands of <u>spent sources</u> were collected and stored at CNENs Institutes since 1988.
- Mainly Am-241/Ra-226 smoke detectors and lightining rods, Ra-226 tubes and needles, Co-60 and Cs-137 from industrial applications

→ CNEN Institutes Interim Storage



**CNEN** Institutes Interim Storage

Inventory of radioactive wastes from medical, industrial and research installations are provisionally stored at CNENs Institutes (IPEN, IEN and CDTN) for treatment

|           | Spent Sources   |         |             | To        | otal Activity Ci |           |
|-----------|-----------------|---------|-------------|-----------|------------------|-----------|
| Institute | Till 2007       | 2008    | Total       | Till 2007 | 2008             | Total     |
| IEN/RJ    | 2,031           | 61      | 2,092       | 1,334.04  | 100.13           | 1,434.17  |
| CDTN/MG   | 1,607           | 50      | 1,657       | 8,414.64  | 914.00           | 9,328.64  |
| IPEN/SP   | 10,792          | 245     | 11.037      | 32,353.65 | 4,105.46         | 36,459.11 |
| TOTAL     | 14,430          | 356     | 14,786      | 42,102.33 | 5,119.59         | 47,221.92 |
|           |                 |         | Lightning r | ods       |                  |           |
|           | Numb            | er      |             | To        | otal Activity Ci |           |
| Institute | Till 2007       | 2008    | Total       | Till 2007 | 2008             | Total     |
| IEN/RJ    | 567             | 12      | 579         | 343.32    | 6.84             | 350.16    |
| CDTN/MG   | 2205            | 368     | 2573        | 1266.84   | 209.76           | 1476.6    |
| IPEN/SP   | 13107           | 237     | 13344       | 7624.35   | 137.67           | 7762.02   |
| TOTAL     | 15879           | 617     | 16496       | 9201.51   | 354.27           | 9588.78   |
|           | Smoke detectors |         |             |           |                  |           |
|           | Number          |         |             | To        | otal Activity Ci |           |
| Institute | Até 2007        | Em 2008 | Total       | Até 2007  | Em 2008          | Total     |
| IEN/RJ    | 3009            | 2016    | 5025        | 13.69     | 10.09            | 23.78     |
| CDTN/MG   | 1351            | 184     | 1535        | 9.03      | 0.92             | 9.95      |
| IPEN/SP   | 22980           | 2261    | 25241       | 104.18    | 11.30            | 115.48    |
| TOTAL     | 27340           | 4461    | 31801       | 126.9     | 22.31            | 149.22    |



**CNEN** Institutes Interim Storage

## Disused Sources in storage

| Institute | Number of | Total                    | Total Activity     | Occupation |
|-----------|-----------|--------------------------|--------------------|------------|
|           | sources   | Volume (m <sup>3</sup> ) | (Bq)               | rate (%)   |
| IPEN/SP   | 149,727*  | 172                      | $5.07 \ge 10^{14}$ | ~99        |
| CDTN/MG   | 15,204**  | 133                      | $1.7 \ge 10^{14}$  | ~ 27       |
| IEN/RJ    | 7,567     | 114                      | $7.60 \ge 10^{12}$ | ~ 99       |

\*This includes 141,320 <sup>241</sup>Am and <sup>226</sup>Ra sources from lightning rods and smoke detectors and excludes 113 neutron sources repatriated to USA.

\*\*This includes 13,670<sup>241</sup>Am and <sup>226</sup>Ra sources from lightning rods and smoke detectors.



**CNEN** Institutes Interim Storage

Strategy devised and implemented for the management of radioactive waste at CNEN  $\rightarrow$  CNEN-NE-6.05-Waste Management.

The main aspects of the management program are:

registry of the waste and spent sources inventory using an electronic database;

waste generation minimization by an adequate segregation, characterization, and dismantling (whenever possible);

volume reduction by chemical treatment for the liquid waste, compaction and cutting for solid waste of sources;

cementation of sludge arising from the chemical treatment and immobilization of the non compactable solid waste in cement/bentonite matrix;

□ quality control of the final product in order to guarantee safety during storage and to minimize doses to workers and individuals of the public.



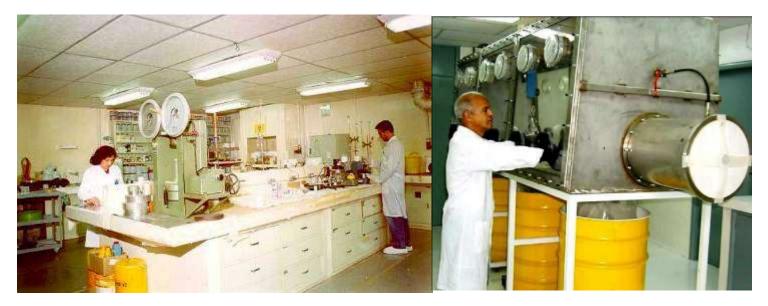
Interim Storage at CNENs Institutes

## **CDTN - Solid Waste Storage Building**





Interim Storage at CNENs Institutes


## **CDTN – Liquid Waste Storage Building**





Interim Storage at CNENs Institutes

## **CDTN – Waste Treatment Facilities**



**Imobilization Lab (cement)** 

Glove Box for Dismantling of Lightning Rods



Interim Storage at CNENs Institutes

## **CDTN – Waste Treatment Facilities**



**Spent Source Dismantling** 



#### **Bitumen Plant Lab**



Interim Storage at CNENs Institutes

## **CDTN – Waste Treatment Facilities**



**Campactation Equipment** 



#### **Cementation Plant**



Interim Storage at CNENs Institutes

## **CDTN – Transport Package Testing**





Interim Storage at CNENs Institutes

## **IPEN – Waste Storage Building**





Interim Storage at CNENs Institutes

## IPEN – NEW!! Waste Storage Building (2010)







Interim Storage at CNENs Institutes

## **IPEN – Waste Treatment Facilities**



Small Activity Spent Source Dismantling Project



Interim Storage at CNENs Institutes

## **IPEN – Waste Treatment Facilities**





Waste Reception / Segregation Unit Glove Box for Lightning Rods Dismantling



Interim Storage at CNENs Institutes

## **IPEN – Waste Treatment Facilities**





#### **Decontamination Unit**

**Liquid Waste Storage** 



Interim Storage at CNENs Institutes

## **IPEN – Waste Treatment Facilities**





**Liquid Waste Imobilization Equipament** 



Interim Storage at CNENs Institutes

## **IPEN – Waste Treatment Facilities**



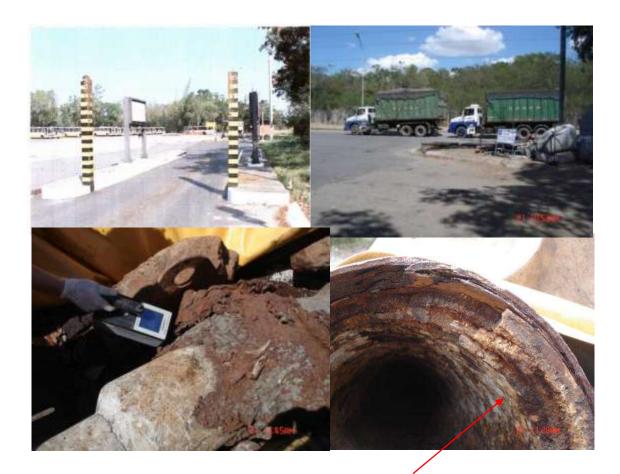


Solid Waste Campactation Equipment - 10.000 kgf, - 5:1



Current Issues #1

## NORM/TENORM ARISING FROM PETROLEUM EXPLOITATION


**Petroleum Exploitation Contaminated Pipes and Equipments** 





Current Issues #1

#### Scrap yard merchant $\rightarrow$ Steel industries



#### BaSO4, SrSO4 or CaCO4 $\rightarrow$ Ra-226 and Ra-228



Current Issues #1

#### Scrap yard merchant $\rightarrow$ Steel industries **Orphan sources**



OMPANHIA SIDERURGICA TUBARÃO Engenharia de Segurança do Trabalho

lbaixo Arquivo Fotográfico do encontro, resgate e identificação da 1º Fonte Radioativa CO 60.





Vista Frontal do Caminhão Transportador.



Encontro da 1º Fonte - 22/05/2004



1º Fonte Radioativa Segregada no DMR

Vista Lateral Retirando a Carga



Transferindo a 1º Fonte Radioativa para o DMR.



Placa de Identificação da 1º Fonte Encontrada

 Once alarmed by portal detectors, the truck has to be unloaded, the burden surveyed to isolate the source...



Prepare a report to CNEN



Current Issues #2

# Low/intermediate level radwaste disposal

## Working group CNEN – CDTN – IEN – IPEN – IRD – ETN - LAPOC

Inventory

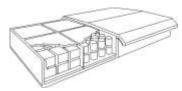
Site Selection

Project options  $\rightarrow$ 

Security Analysis

Legislation, Standardization and Licensing



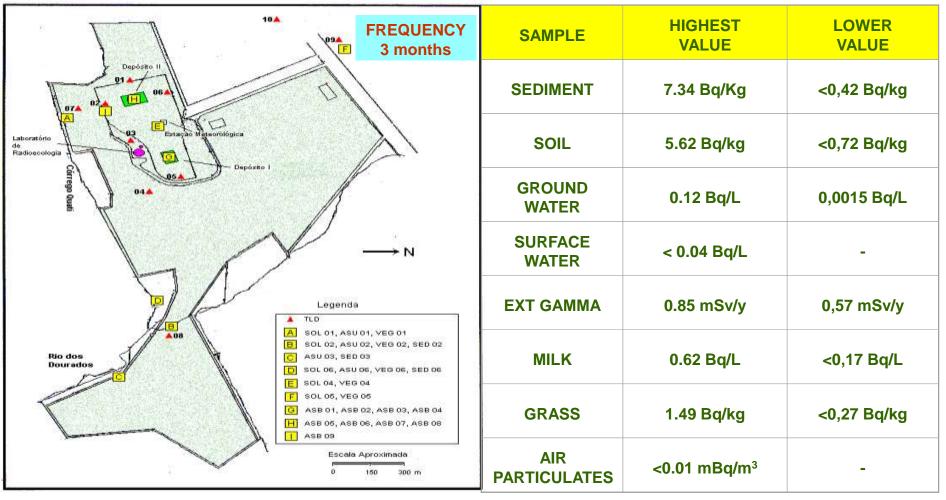

Current Issues #2

# Project option 1 - Near surface repository

The Goiânia accident disposal vaults



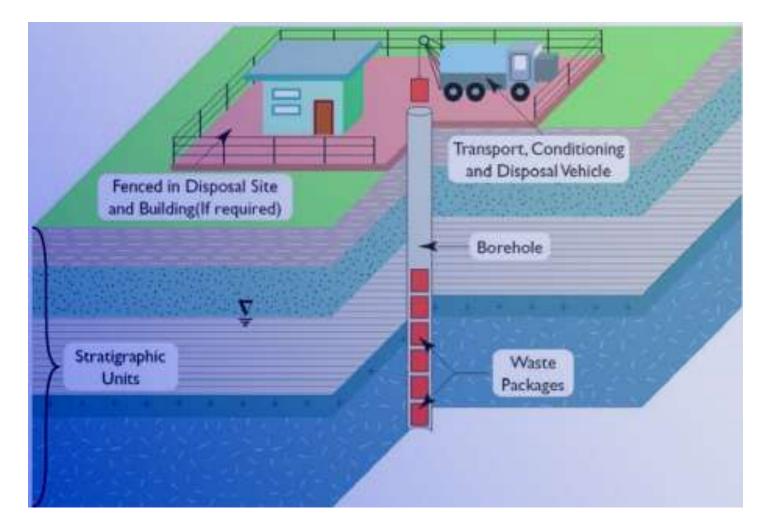
Exempt waste






Current Issues #2

# Project option 1 - Near surface repository


Monitoring agreement between CNEN and the state of Goiás for 50y





Current Issues #2

## Project options - Deep repository, Cave, Borehole?





Improvements for the management of RadWaste

> The development of a unified and standardized database that records the national radioactive waste inventory;

Increasing of the capacity of CNEN institutes to treat and store radioactive waste;

>The need to review and update Waste Management Regulations

≻The need to select the site and implement the National Repository for Radioactive Waste, providing final disposal for low- and intermediate level radioactive waste; ~ 2020??

The development of public acceptance and democratic participation programs for waste repositories;



Improvements for the management of RadWaste

 $\succ$  Training, recruiting and retention of human resources, in light of the forecasted resurgence of nuclear activities in the country and of the foreseen reduction of the labor force in the field, due to retirements and lack of retention;

The development of a regulatory body which is independent of all its regulated agents. (ARN – Argentina)

EBRR (Brazilian Enterprise for the Management of Radioactive Waste) – ANDRA (France) – ENRESA (Spain)



# OBRIGADO MUCHAS GRACIAS THANK YOU