Decommissioning Legacy Uranium Mills in the United States

Keith McConnell, Deputy Director

for

Decommissioning and Uranium Recovery Licensing
Division of Waste Management & Environmental Protection
Office of Federal and State Materials and Environmental Management Programs
How NRC defines “Legacy sites”:

- Legacy sites at the NRC are characterized by:
 - Technical complexity,
 - Lack of funding, or
 - Other circumstance (for example: lack of remediation standards or technology)
 - Such that, decommissioning is substantially delayed

- Civilian nuclear power plants not considered “legacy sites” because none of the above factors apply

- Uranium recovery mills from the 1950’s through the 1980’s are largely considered legacy sites because the above conditions apply
NRC’s Responsibility:

- Regulatory oversight for milling activities; no authority over mining of uranium
 - URANIUM MILLING - “Any activity that results in the production of byproduct material…”
 - BYPRODUCT MATERIAL - “The tailings or wastes produced by the extraction or concentration of uranium or thorium from any ore processed primarily for its source material content…”
U.S. Law Governing Mill Decommissioning:

 - TITLE I: Remedial action at inactive, abandoned, unlicensed sites
 - TITLE II: Licensing/Oversight/Remediation of uranium recovery facilities licensed by the NRC or an Agreement State in or after 1978
Roles and Responsibilities at Title I Sites:

- U.S. Environmental Protection Agency (EPA) establishes standards for cleanup and disposal
- U.S. Department of Energy (DOE) identifies and remediates all Title I sites to EPA standards
- NRC evaluates and concurs in DOE’s site remediation plans and that site remediation has been adequately completed
- DOE becomes the long-term site custodian under NRC General License
Roles and Responsibilities at Title II Sites:

• EPA establishes standards for cleanup and disposal of byproduct material
• Commercial Licensee remediates site
• NRC or Agreement State oversees decommissioning to EPA standards
• DOE’s develops Long Term Surveillance Plans for conventional mills
• NRC or the Agreement State terminates specific license
• DOE becomes the long-term site custodian under NRC General License
Decommissioning Standards - EPA:

- **40 CFR 192:**
 - Soil and Buildings:
 - 5 pCi/g averaged over the first 15 cm
 - 15 pCi/g averaged over 15 cm more than 15 cm below surface
 - Radon:
 - 20 pCi/m²sec
 - Ground water:
 - Background or maximum contaminant level whichever is higher, or
 - Alternate concentration limit
Historical Perspective on Regulatory Oversight:

• Milling activities in the U.S. peaked in the 1950’s to 1970’s
• Uranium Mill Tailings Radiation Control Act - 1978
• EPA standards at 40 CFR 192 promulgated in 1983, amended 1987
• Final NRC regulations at 10 CFR Part 40, Appendix A promulgated in 1985 (no ground water), amended 1987
• Regulatory framework finalized after the peak of milling
NRC Uranium Recovery Sites in Decommissioning

- 42 Uranium Recovery sites
 - 21 Title I (Inactive, pre-1978 sites)
 - 17 Title II (Active, post 1978 sites)
 - 12 Conventional mills (1 in standby, 11 undergoing reclamation)
 - 5 Completed decommissioning (DOE License for long term stewardship)
Title I Uranium Recovery Sites

- Tuba City
- Falls City
- Spook
- Riverton
- Lakeview
- Mexican Hat
- Durango
- Gunnison
- Shiprock
- LaVernia
- Lowman
- Salt Lake City
- Green River
- Atlas
- Naturita
- Tuba City
- Monument Valley
- Ambrosia Lake
- Canonsburg and Burrell sites located in Pennsylvania
Title II Uranium Recovery Sites

- Pathfinder Lucky Mc
- ANC Gas Hills
- Umetco Gas Hills
- Sweetwater (conventional mill standby)
- UNC Church Rock
- Rio Algom
- Arco-Bluewater
- Homestake
- L-Bar
- Western Nuclear Split Rock
- Union Pacific Bear Creek
- Exxon Highland
- PRI SR-HUP and Reynolds Ranch (active ISL)
- Edgemount
- Irigaray/Christiansen Ranch (active ISL)
- Crow Butte (active ISL)
- Pathfinder Shirley Basin
- Shirley Basin South
- Sequoyah Fuels

Note: Colorado, Texas, and Utah are agreement states
Case Studies of Decommissioning Mills in New Mexico

– ARCO-Bluewater – DOE General License
 • Decommissioning began 1989
 • Surface reclamation completed in 1995
 • License terminated in 1997
 • Site under DOE long-term care/custody

– Homestake-Grants – Decommissioning
 • Decommissioning began 1990
 • Surface reclamation complete 1995
 • Groundwater restoration ongoing
 • License termination expected in 2017

– Rio Algom-Ambrosia Lake – Decommissioning
 • Decommissioning began 2003
 • Surface reclamation nearly complete
 • Groundwater reclamation completed in 2001
 • License termination expected in 2011
Case Studies of Decommissioning Mills in New Mexico (cont.):

• **UNC Church Rock – Decommissioning**
 – Decommissioning began: 1982
 – Surface reclamation nearly complete
 – Groundwater restoration ongoing
 – Potential site for disposal of Northeast Church Rock mine tailings
 – License termination – TBD

• **L-Bar – DOE General License**
 – Decommissioning began 1986
 – Surface reclamation completed in 2000
 – License terminated in 2004
 – Site under DOE long-term care/custody
Title I – Salt Lake Mill - before
Salt Lake City Mill - after
Rifle Site - before
Rifle Site - after
Reclaimed Tailings Impoundment – East (Canonsburg)
Reclaimed Tailings Impoundment – West (Tuba City)
Legacy Sites: Lessons Learned

- Established regulatory framework essential to avoiding contamination
- Adequate financial assurance necessary to prevent orphaned sites
- Groundwater contamination = Time + $
- Groundwater flow and transport modeling key to identifying remediation strategies
- Long-term stewardship, including post closure groundwater monitoring confirms long-term performance
Title I Decommissioning Summary
(Source: U.S. Energy Information Agency)

<table>
<thead>
<tr>
<th>Decommissioning Project (Mill Site Name, State)</th>
<th>Uranium Ore Processed</th>
<th>Disposal Cell</th>
<th>Remediation Project Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ore (Million Short Tons)</td>
<td>Uranium Production (Million Pounds U_3O_8)</td>
<td>Remediated Material Volume (Million Cubic Yards)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------------</td>
<td>---------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Ambrosia Lake (Phillips), NM E</td>
<td>3.05</td>
<td>13.02</td>
<td>5.20</td>
</tr>
<tr>
<td>Belfield, ND</td>
<td>0.05</td>
<td>0.34</td>
<td>=</td>
</tr>
<tr>
<td>Bowman, NM</td>
<td>0.08</td>
<td>0.61</td>
<td>=</td>
</tr>
<tr>
<td>Burrell, PA</td>
<td>=</td>
<td>=</td>
<td>0.07</td>
</tr>
<tr>
<td>Canonburg, PA</td>
<td>=</td>
<td>=</td>
<td>0.19</td>
</tr>
<tr>
<td>Durango, CO</td>
<td>1.61</td>
<td>7.85</td>
<td>2.53</td>
</tr>
<tr>
<td>Edgemont, SD</td>
<td>1.98</td>
<td>6.86</td>
<td>3.00</td>
</tr>
<tr>
<td>Falls City, IA</td>
<td>2.72</td>
<td>8.66</td>
<td>5.80</td>
</tr>
<tr>
<td>Grand Junction, CO</td>
<td>2.28</td>
<td>11.69</td>
<td>4.43</td>
</tr>
<tr>
<td>Green River, UT</td>
<td>0.18</td>
<td>0.83</td>
<td>0.38</td>
</tr>
<tr>
<td>Gunnison, CO</td>
<td>0.54</td>
<td>1.45</td>
<td>0.74</td>
</tr>
<tr>
<td>Lakeview, OR</td>
<td>0.13</td>
<td>0.34</td>
<td>0.94</td>
</tr>
<tr>
<td>Lowman, ID</td>
<td>0.20</td>
<td>0.37</td>
<td>0.13</td>
</tr>
<tr>
<td>Maybell, CO</td>
<td>1.76</td>
<td>4.03</td>
<td>3.50</td>
</tr>
<tr>
<td>Monument Hot, UT</td>
<td>2.20</td>
<td>11.38</td>
<td>3.48</td>
</tr>
<tr>
<td>Monument Valley, AZ</td>
<td>1.10</td>
<td>0.77</td>
<td>0.93</td>
</tr>
<tr>
<td>Naturita, CO</td>
<td>0.70</td>
<td>3.18</td>
<td>0.79</td>
</tr>
<tr>
<td>Title, CO 2</td>
<td>2.70</td>
<td>16.54</td>
<td>3.76</td>
</tr>
<tr>
<td>Riverton, WY</td>
<td>1.06</td>
<td>3.89</td>
<td>1.79</td>
</tr>
<tr>
<td>Salt Lake City, UT</td>
<td>1.69</td>
<td>9.57</td>
<td>2.80</td>
</tr>
<tr>
<td>Shiprock, NM</td>
<td>1.53</td>
<td>7.42</td>
<td>2.80</td>
</tr>
<tr>
<td>Black Rock, CO 2</td>
<td>0.63</td>
<td>2.68</td>
<td>0.86</td>
</tr>
<tr>
<td>Spook, WY</td>
<td>0.19</td>
<td>0.35</td>
<td>0.32</td>
</tr>
<tr>
<td>Tulsa City, AZ</td>
<td>0.80</td>
<td>4.70</td>
<td>1.40</td>
</tr>
<tr>
<td>Total and Averages:</td>
<td>27.17</td>
<td>116.53</td>
<td>46.07</td>
</tr>
</tbody>
</table>
Challenges:

• Addressing long-standing contamination
• Public confidence
• Licensing new facilities
 – Outdated regulatory framework