C-14 in Rice Scenario

IAEA-EMRAS Tritium/C-14 Working Group June 2005

1. BACKGROUND

Carbon-14 (¹⁴C) is one of the major radionuclides released from the nuclear fuel cycle into the environment. It has long been noted that the relatively long half-life of ¹⁴C (5,730 years), together with its mobility in the environment and incorporation into man via the food-chain, leads to the long-term homogeneous irradiation of the global population. In addition, ¹⁴C discharges from nuclear facilities probably result in the enhancement of ¹⁴C levels in biogenic materials in the vicinity and subsequent excess exposure of local population. The development and application of functional mathematical models for predicting short-range ¹⁴C transfer in the terrestrial environment is therefore necessary to assess the local radiological impact of the anthropogenic ¹⁴C.

The Tokai reprocessing plant (TRP) of Japan Nuclear Cycle Development (JNC) started hot test in September 1977. The total amount of 1,000 tons of spent fuels used at boiling water reactors (BWRs), pressurized water reactors (PWRs) and an advanced thermal reactor (ATR), has been successfully reprocessed as of June 2002. The JNC has conducted careful monitoring for ¹⁴C in airborne discharge via 90-m stacks from the TRP, and ¹⁴C in atmospheric CO₂ and rice grain (Japanese daily diet) collected around the TRP site. The monitoring data over ten years from 1991 to 2001 would be useful for model-data intercomparison studies on the regional ¹⁴C transfer in the environment.

2. SITE DESCRIPTION

Tokai-mura is basically a flat land of agriculture such as rice plant, vegetable and fruit plants. An overview of the Tokai-mura is shown in **Fig. 2.1**. The population of Tokai-mura is about 35,400 as of 2000. The Tokai reprocessing plant of JNC is located in the east end of the Tokai-mura (the longitude 140.6° E, latitude 36.5° N), facing the Pacific Ocean.

3. DISCHARGE MONITORING

3.1. Discharge sources

Carbon-14 has been discharged from three stacks (called "Main stack", "Sub-1 stack" and "Sub-2 stack", respectively) of the TRP with gaseous effluent. Dominant sources of ¹⁴C discharged from the Main stack are shearing and dissolution of the spent fuel and following solvent extraction processes for separating uranium and plutonium from fission products. Carbon-14 released from the Sub-1 and Sub-2 stacks are mainly from the bituminization of low active level liquid waste and the vitrification of high active level liquid waste, respectively.

The Sub-1 and Sub-2 stacks were located on about 210 m east-northeast and 35 m southwest from the Main stack, respectively. All the stacks had physical height of 90 m, and the release points of them were situated on 96 m above the sea-level. The diameters of outlets (release points) of the stacks were 2.9 m for the Main stack, 2.4 m for the Sub-1 stack and 2.8 m for the Sub-2 stack, respectively. Gaseous effluents including ¹⁴C were continuously released from the stacks at exhaust rates listed in **Table 3.1**, but ¹⁴C concentrations were less than the authorized detectable limit, 40 Bq cm⁻³, during non-reprocessing. Almost all (more than 97%) of ¹⁴C is proved to be discharged as CO₂ form during reprocessing⁽¹⁾.

The effective height of the release is not always the same as the actual physical height of the release point. The upward momentum of released effluents will tend to make the effective height greater than the actual height of the release. The effective plume rise should be simply calculated by applying mean wind speed to a following equation:

$$H = \frac{3 \cdot W \cdot D}{U}$$
(1)

where H is the effective plume rise (m), W the speed of exhaust air at stack (m s⁻¹), D the diameter of the stack outlet (m), and U the mean wind speed at top of the stack (m s⁻¹). The effective height of the release can be therefore derived from the physical stack height + effective plume rise. Air temperatures of stack discharges are also provided in **Tables A.1-A.6** in **APPENDICES**.

3.2. Brief description of monitoring method

The monitoring has been accomplished by sampling airborne effluent from the stack before discharge. A portion of the airborne effluent was introduced into the ¹⁴C sampler at a flow rate of 0.4 l min⁻¹ for a week. Hydrocarbons and carbon monoxide were catalytically converted into chemical form of CO₂. All carbon was then absorbed as CO₂ in 200 ml of monoethanolamine (MEA; 2-aminoethanol) in a bubbler-type trap after passing through a dehumidifier to remove water vapor in the air. Preliminary experiment demonstrated that the CO₂ absorption efficiency of the trap is almost 100%. At the end of the given sampling period, an aliquot of the MEA was mixed with liquid scintillator and methanol. The ¹⁴C activity of the prepared sample was measured using a liquid scintillation counter with 180 min measurement time. The concentration of ¹⁴C in the airborne effluent was evaluated using the result of activity measurement and some parameters such as volume of MEA used for sample preparation and the total volume of air collected. The ¹⁴C activity discharged in the given period was estimated by multiplying the ¹⁴C concentration by air throughput of the stack⁽²⁾. Weekly monitoring has been accomplished typically by Wednesday-Wednesday sampling.

3.3. Data of ¹⁴C discharge rates

Reporting the monitoring data of ¹⁴C in airborne effluent from the TRP was officially started in October 1991 for Main and Sub-1 stacks. As for Sub-2 stack, data of ¹⁴C in airborne release has been reported since September 1994. The numerical data of weekly monitoring from October 1991 to December 2001 are provided in **Tables B.1-B.6** in **APPENDICES**⁽³⁾.

Fig. 3.1 shows annual discharge rates of ¹⁴C from three stacks. It should be noted that the fire and explosion accident at the bituminization demonstration facility on March 1997 stopped the operation of the TRP until July 2000. Variations in monthly atmospheric ¹⁴C discharges from three stacks are plotted in **Figs. 3.2-3.4**, respectively. The monthly discharge from the TRP (total of three stacks) is also shown in **Fig. 3.5**. The annual ¹⁴C discharge amount was always considerably lower than the authorized discharge limit in the Safety Regulation for the TRP.

4. ENVIRONMENTAL MONITORING

4.1. Monitoring items and locations

Environmental monitoring of ¹⁴C has been made mainly for two items: (1) atmospheric ¹⁴C in CO₂ form; and (2) ¹⁴C in polished rice grain. The atmospheric ¹⁴CO₂ has been sampled every month at five sampling locations. Polished rice grain has been collected at three locations around the TRP in the harvest season of rice. A location map for collecting ¹⁴CO₂ and rice grain samples is presented in **Fig. 4.1**. Detailed information on the sampling locations and available data is summarized in **Table 4.1**. Longitudinal and latitudinal data of discharge sources and sampling locations are also presented in **Table 4.2**. The sampling points of ST-1 and R-1 are located on about 0.6 km west north-west and about 2.1 km west-southwest from the Sub-1 stack, respectively.

4.2. Brief descriptions of monitoring methods

A CO₂ sampler was used to monitor ¹⁴CO₂ concentration in the atmosphere. In the sampler, ¹⁴C in CO₂ form was absorbed in NaOH solution with stable CO₂ in a monthly monitoring basis, which made CaCO₃ precipitate with NH₄Cl and CaCl₂ after sampling. The precipitate was decomposed with H₃PO₄ to re-generate CO₂. The resulting CO₂ was converted to C₂H₂ in a reaction of metallic lithium with water, and then C₆H₆ was synthesized by polymerization of C₂H₂. The C₆H₆ was mixed with liquid scintillator for measuring ¹⁴C activity (Bq/gC) by liquid scintillation counting. The error of ¹⁴C measurement was normally \pm 0.003 Bq/gC. The error presents one standard deviation associated with radiation counting.

Rice grain was completely combusted in a pressurized combustion chamber filled with oxygen, in which CO₂ was produced. The resulting CO₂ was converted to C₆H₆ and analyzed for ¹⁴C activity (Bq/gC) by the same manner as ¹⁴CO₂ measurement described above. The error of ¹⁴C activity was within ± 0.003 Bq/gC. Carbon-14 activity per unit weight of rice (Bq/kg-raw) also could be calculated by using a factor 0.41 that is carbon content (gC/g-raw) in rice.

4.3. Carbon-14 in polished rice grain in 1991

The ¹⁴C activities of rice grain samples collected in 1991 showed no or fewer

enhancements above the background level in Japan, although some amounts of ¹⁴C had been discharged into the atmosphere from the TRP. This implies that the accumulation of ¹⁴C discharged in the past on the paddy field would be apparently negligible in starting point of the model calculation (1991) in this scenario.

5. METEOROLOGICAL MONITORING

The meteorological monitoring was made at ten minutes interval for following items:

- (1) Wind direction and speed (m s^{-1}) at 10 m above the ground;
- (2) Wind direction and speed (m s^{-1}) at the top of stack, 90 m above the ground;
- (3) Rainfall (mm);
- (4) Atmospheric temperature (°C) and relative humidity (%) at 1.5 m above ground;
- (5) Solar radiation (kW m^{-2}); and
- (6) Atmospheric stabilities.

The item (2) was monitored at the top of a meteorological observation tower built on the JNC site. The height is about 100 m above the sea level, corresponding to the physical height of the stacks above the sea level. Other items were measured near the ST-1 point. The meteorological data averaged over hourly periods are available as input data for model calculations.

6. OTHER INFORMATION

6.1. Background level of ¹⁴C in Japan

Fuma et al. (2002) reported environmental background ¹⁴C levels in Japan in 1990s⁽⁴⁾. They selected grapes as an indicator of ¹⁴C levels in the environment, and determined the specific activities of ¹⁴C in ethanol extracted from wine made from grapes cultivated in several prefectures or unknown places in Japan. The specific activities of ¹⁴C gradually decreased from 0.260 Bq/gC in 1991 to 0.244 Bq/gC in 2000 (**Table 6.1**).

6.2. Other nuclear facilities in Tokai-mura

It should be noted that there are some potential ¹⁴C sources in Tokai-mura such as a

BWR (operated from November 1978) and a gas cooled reactor (GCR, operated from July 1966 to March 1998). These reactors are located in about 3-4 km north-northeast from the TRP site (**Fig.2.1**).

6.3. CO₂ concentration

A thermoelectric power plant near the JNC site shown in **Fig.4.1** has been operated from December 2003. Therefore, CO_2 concentration in the air is to be believed in the normal range as those of rural areas in Japan in the period of 1991-2001. As an example, the CO_2 concentration at 30 cm above the ground in Tokai-mura was estimated to be approximately 380-390 ppmv in 2000⁽⁵⁾.

6.4. Management of a paddy field

A schedule for managing paddy field in Tokai-mura in 1999 is presented in **Table 6.2**. Panorama of paddy field is photographically shown in **Figs. 6.1a-6.1d**. For 1991 to 2001, date of transplanting, flowering and harvesting were 10-15 May, 15-20 August, and 18-25 September, respectively, indicating that the difference in timing of each stage is within 7 days.

6.5. Growth curve of a rice plant

Osaki and Tanaka (1979) investigated growth curves of four components in a rice plant in Hokkaido that is northernmost island of Japan⁽⁶⁾. **Fig. 6.2** shows growth curves determined at four growth stages of a rice plant: (1) vegetative stage; (2) flowering stage; (3) milky stage; and (4) harvest stage. The easily respired-substrate and the stored-substrate were rapidly increased in the reproductive phase. Here, the easily respired-substrate means the photosynthesized-substrate released by respiration within a day after CO_2 assimilation. The stored-substrate is temporarily stored in the plant, but will be respired from the plant by harvesting. The dry weight of stems, leaves and roots had a remarkable increase until milky stage. The dry weight of ears showed a different trend of growth rate, which was sharply increased in the ripening phases. At the harvest stage, the dry weights of harvesting organs (ears) and non-harvesting organs (stems, leaves and roots) were almost same (30 g-dry weight per a stock). A stock is a unit bunch of pieces of rice plant. The numerical data is given in **Table 6.3**. Kondo (2005) investigated more in detail rice growth curves of four components in a rice plant (koshihikari) in Ibaraki in 2004⁽⁷⁾. In this study, four components include (1) leafs; (2) stems; (3) ear stems; and (4) ears. The rice plant were transplanting on 7 May. **Fig.6.3** shows growth curves determined at 6 growing stages of a rice plant. The numerical data is provided in **Table 6.4**.

6.6. Storage and distribution of assimilated-¹⁴C in rice plant

Osaki and Tanaka (1979) also investigated storage and distribution of assimilated-¹⁴C in rice plant in Hokkaido⁽⁶⁾. Carbon-14 were fed to rice plants at three different growth stages (vegetative, flowering and milky stages), and then ¹⁴C retention ratio and its distribution in three components of the rice plant were determined at the harvest stage. The results are presented in **Fig. 6.4**. The total ¹⁴C-retention percentages were approximately 50%, 65% and 90% for ¹⁴C-assimilation at vegetative, flowering and milky stages, respectively. The ¹⁴C-distribution percentages in ears at the harvest stage were about 7%, 28% and 82%, respectively, when ¹⁴C was fed at the vegetative, flowering and milky stages. These data suggest that during ripening photosynthates are efficiently translocated to the harvesting organs (ears).

7. CALCULATION END POINTS

Using the information provided above, please calculate

- Monthly mean ¹⁴C concentrations (Bq/gC) in air collected at two (three) monitoring points ST-1 and ST-2 (and ST-N) from May to October (i.e. the rice growing season) for 1992 to 1997.
- (2) Carbon-14 concentrations (Bq/gC) in rice grains collected at two (three) monitoring pointsR-1 and R-2 (and R-3) for 1992 to 2001.
- (3) 95% confidence intervals on all predictions in (1) and (2) above.

REFERENCES

(1) Koarashi, J., Akiyama, K., Asano, T. and Kobayashi, H. (2005). Chemical composition of

¹⁴C in airborne release from the Tokai reprocessing plant, Japan. Radiation Protection Dosimetry, in press.

- (2) Koarashi, J., Kozawa, T., Yokota, T., Isaka, K., Akiyama, K. and Asano, T. (2004). Methods and their performances for collecting tritium, carbon-14 and radioiodine in airborne effluent from Tokai reprocessing plant, JNC TN8410 2004-003 (in Japanese).
- (3) Koarashi, J. and Fujita, H. (2005). Review of monitoring data (1991-2001) for model-data intercomparison studies on ¹⁴C transfer in the environment, JNC TN8450 2004-011.
- (4) Fuma, S., Inoue, Y., Miyamoto, K., Takeda, H., Iwakura, T., Arai, K., Kashida, Y. and Ichimasa, Y. (2002). Environmental background ¹⁴C levels in Japan in 1990s. Radioisotopes, 51, 381-391 (in Japanese).
- (5) Koarashi, J., Amano, H., Andoh, M., Iida, T. and Moriizumi, J. (2002). Estimation of ¹⁴CO₂ flux at soil-atmosphere interface and distribution of ¹⁴C in forest ecosystem. Journal of Environmental Radioactivity, 60, 249-261.
- (6) Osaki, M. and Tanaka, A. (1979). Current photosynthates and storage substances as the respiratory substrates in the rice plant. Nihon Dojou Hiryougaku zasshi (Japanese Journal of Soil Science and Plant Nutrition), 50, 540-546 (in Japanese).
- (7) Kondo, M. (2005). Private communication.

APPENDICES

Table A.1. Air temperature of stack discharge (1991-1992).

Table A.2. Air temperature of stack discharge (1993-1994).

Table A.3. Air temperature of stack discharge (1995-1996).

Table A.4. Air temperature of stack discharge (1997-1998).

Table A.5. Air temperature of stack discharge (1999-2000).

Table A.6. Air temperature of stack discharge (2001).

- Table B.1. Weekly data of airborne ¹⁴C release from the TRP (1991-1992).
- Table B.2. Weekly data of airborne ¹⁴C release from the TRP (1993-1994).
- Table B.3. Weekly data of airborne ¹⁴C release from the TRP (1995-1996).
- Table B.4. Weekly data of airborne ¹⁴C release from the TRP (1997-1998).
- Table B.5. Weekly data of airborne ¹⁴C release from the TRP (1999-2000).
- Table B.6. Weekly data of airborne ¹⁴C release from the TRP (2001).

Year	Representative exhaust rate $(m^3 h^{-1})$					
	Main stack	Sub-1 stack	Sub-2 stack			
1991	4.02×10^{5}	1.28×10^{5}	-			
1992	4.17×10^{5}	1.22×10^{5}	-			
1993	4.17×10^{5}	1.22×10^{5}	-			
1994	4.17×10^{5}	1.31×10^{5}	1.19×10^{5}			
1995	4.17×10^{5}	1.28×10^{5}	1.13×10^{5}			
1996	4.17×10^{5}	1.31×10^{5}	1.31×10^{5}			
1997	4.17×10^{5}	8.93×10^{4}	1.26×10^{5}			
1998	4.17×10^{5}	1.01×10^{5}	1.31×10^{5}			
1999	4.17×10^{5}	8.93×10^{4}	1.26×10^{5}			
2000	4.17×10^{5}	1.01×10^{5}	1.24×10^{5}			
2001	4.02×10^{5}	8.93×10^{4}	1.28×10^{5}			

Table 3.1. Representative exhaust rates of three stacks from 1991 to 2001.

C-14 in Rice Scenario

18 March 2005 Revised in 20 May 2005 Revised in 26 July 2005

Table 4.1. Information on sampling locations and available data for 1991-2001.

Item	Location		Distance and direction from	Available data	Notes
			Main stack		
Atmospheric ¹⁴ CO ₂	ST-1	(In JNC site)	0.5 km northwest	Jan.1991-Feb.1994	
	ST-2	(Funaishikawa)	4.2 km northwest	Apr.1993-Mar.1994	
	ST-3	(Nagasuna)	2.8 km southwest	Jan.1991-Jan.1997	
	ST-4	(Koya)	5.2 km west-southwest	May 1991-Dec.1995	Control
	ST-N	(Naka-machi)	14.6 km west-northwest	Jan.1991-June 1996	Control
Polished rice grain	R-1	(Nagasuna)	1.9 km west-southwest	1991-2001	
	R-2	(Terunuma)	1.0 km west	1991-2001	
	R-3	(Nishi-10 km)	11.8 km west	1991-2001	Control

C-14 in Rice Scenario

18 March 2005 Revised in 20 May 2005 Revised in 26 July 2005

Item	Location	Longitude	Latitude	Notes
Discharge sources	Main stack	36° 26' 36.1" N	140° 36' 19.0" E	
	Sub-1 stack	36° 26' 38.5" N	140° 36' 26.8" E	
	Sub-2 stack	36° 26' 35.2" N	140° 36' 18.1" E	
Atmospheric ¹⁴ CO ₂	ST-1	36° 26' 46.1" N	140° 36' 05.6" E	
	ST-2	36° 28' 20.2" N	140° 34' 33.7" E	
	ST-3	36° 25' 24.0" N	140° 35' 10.7" E	
	ST-4	36° 25' 37.7" N	140° 32' 55.3" E	Control
	ST-N	36° 28' 27.2" N	140° 26' 41.0" E	Control
Polished rice grain	R-1	36° 26' 11.1" N	140° 35' 10.3" E	
	R-2	36° 26' 26.7" N	140° 35' 39.9" E	
	R-3	36° 26' 08.1" N	140° 28' 19.5" E	Control

Table 4.2. Longitudinal and latitudinal data of discharge sources and sampling locations.

Year	Specific activity of ¹⁴ C (Bq/gC)
1991	0.261 ± 0.002^{a}
1992	0.264 ± 0.005
1993	0.254 ± 0.003
1994	0.255 ± 0.003
1995	0.254 ± 0.004
1996	0.251 ± 0.002
1997	0.250 ± 0.002
1998	0.252 ± 0.003
1999	0.248 ± 0.004
2000	0.244 ± 0.002

Table 6.1. Environmental background ¹⁴C levels in Japan in 1990s.

^aStandard deviation (1 σ) of the mean.

Date	Growing stage	Days after	Depth of	Dry/wet ratio of
		transplanting	water (cm)	soil weight (%)
12 May	Transplanting	-	0-3	50.9
15 July	Midseason	60	2-5	58.2
	drainage			
4 August	Flowering	80	3-5	-
	(Early ripening)			
20 September	Harvest	130	0	-
28 September	After harvest	140	0	74.1

Table 6.2. A schedule for managing paddy field in 1999 in Tokai-mura.

Days after	Growing	Total weight	Weights of four components (g-dry/stock)			
transplanting	stage	(g-dry/stock)	Ears	Stems,	Easily	Stored-
				leaves	respired-	substrate
				and roots	substrate	
50	Vegetative	18.2	0.7	8.0	6.2	3.3
70	Flowering	54.1	6.4	23.1	14.8	9.8
100	Milky	78.5	19.2	29.3	17.0	13.0
120	Harvest	91.6	30.0	30.6	17.9	13.1

Table 6.3. Growth of a rice plant observed in Hokkaido.

Table 6.4. Growth of a rice plant observed in Ibaraki.

Days after	Total weight	Weights of four components (g-dry/m ²)				
transplanting	$(g-dry/m^2)$	Leafs	Stems	Ear stems	Ears	
49	90	53	37	-	-	
62	346	179	167	-	-	
74	629	238	391	-	-	
82	849	233	569	-	47	
97	1152	209	520	-	423	
118	1174	140	409	20	605	

Fig.2.1. An overview of Tokai-mura with the Tokai reprocessing plant.

Fig.3.1. Annual discharge rates of ¹⁴C from the TRP.

Fig.3.2. Monthly discharge rates of ¹⁴C from the Main stack.

Fig.3.3. Monthly discharge rates of ¹⁴C from the Sub-1 stack.

Fig.3.4. Monthly discharge rates of ¹⁴C from the Sub-2 stack.

Fig.3.5. Monthly discharge rates of ¹⁴C from the TRP.

Fig.4.1. Location map for collecting $^{14}CO_2$ and rice grain samples.

Fig. 6.1a. Paddy field before transplanting rice plant (10 May 1999).

Fig. 6.1b. Paddy field after transplanting rice plant (12 May 1999).

18 March 2005 Revised in 20 May 2005 Revised in 26 July 2005

Fig.6.1c. Paddy field in flowering stage (3 August 1999).

Fig.6.1d. Paddy field in late ripening phase (13 September 1999).

Fig.6.2. Growth curves of four components in rice plant.

Fig.6.3. Growth of four components in rice plant in Ibaraki.

Fig. 6.4. Distribution percentage of assimilated-¹⁴C at the harvest stage.