Matthias Bothe

Verein für Kernverfahrenstechnik und Analytik Rossendorf e.V. PF 510119, 01314 Dresden, Germany matthias.bothe@vkta.de

Decommissioning complexes

Decommissioning complexes

•Complex 1: Reactors

- Rossendorf Research Reactor (RFR)
- Rossendorf Ring Core Reactor (RRR)
- Rossendorf Assembly for Critical Experiments (RAKE)

•Complex 2: Isotope production facility

•Complex 3: Waste treatment centre

Rossendorf Research Reactor (RFR)

Rossendorf Research Reactor

- •light water modulated and cooled tank reactor (SU)
- •10 MW_{therm}
- •10¹⁴ ncm⁻²s⁻¹
- •1957 1991 (105 115 h operating time)
- •purposes:
 - nuclear physics
 - reactor physics
 - safety research
 - neutron activation
 - production of neutron transmutation doped silicon

Rossendorf Research Reactor (RFR)

Rossendorf Research Reactor (RFR)

Rossendorf Ring Core Reactor (RRR)

1962 –1991 maximal 1 kW

Isotope production facility

•AMOR – Anlage zur Molybdän-Rückgewinnung (facility for molybdenum recovery)

product: Mo-99 (decay to Tc-99m for radiopharmaceuticals)
various nuclides for tracer experiments in industry
sealed sources

Isotope production plant

Hot cell

Relevant Radionuclides

alpha	beta	gamma	
Ra-226	H-3	Na-22	
U-isotopes	C-14	Co-60	
Pu-isotopes	CI-36	Cs-134	
Am-241	Fe-55	Cs-137	
	Ni-63	Ba-133	
	Sr-90/Y-90	Eu-152	
		Eu-154	
		Eu-155	

Legende:

unzulässige Kontamination wurde festgestellt ...

im Baukörper mittels Direktmessung mit LB122/123

im Baukörper mittels In-situ-Gammascanning

in der Bodenplatte/Betonfußboden durch Laboranalysen

im Boden unter der Bodenplatte durch Laboranalysen

area between buildings

area between buildings

area between buildings

area between buildings: surface contamination measurement

metal chip with Co-60

Waste treatment centre

treatment and storage of solid radioactive waste
collection, treatment, storage for decay of radioactive waste waters

- reactors
- isotope production facility
- radionuclide laboratories

•in operation 1957 - 1999

waste treatment centre

waste treatment centre

waste treatment centre

contamination at storage pond

situation at storage pond

situation at storage pond

contamination:	deep seated, difficult to access
activity distribution:	very heterogeneous, diffuse areas
	contamination sources below the building
nuclide vector:	source: relatively uniform
	soil profile: very variable
total activity in the soil:	ca. 500 MBq

variability of specific activity [Bq/g]				
nuclide	contamination source	diffuse area		
Co-60	0,1 – 4,0	0,08 – 1,0		
Sr-90	0,3 – 0,5	0,3 – 9,0		
Cs-137	0,2 - 9,0	0,08 – 1,0		

options:

1.according GRPO § 29 (1)

- clearance levels of GRPO Annex III Table 1
- total demolition of building structures
- removal of huge amount of contaminated soil
- release measurements after removal

2.new conception according GRPO § 29 (2)

- release limits according de-minimis conception
- release measurements of buildings in-situ
- release measurements of soil around buildings

waste treatment centre

establish site specific release limits

establish site specific release values

additional conditions

- contouring of the area under consideration of
 - runoff of surface water
 - stability

•evaluation criteria

- compliance with de-minimis-conception
- technical feasibility
- authorisation
- costs
- aspects of environmental and radiation protection

establish site specific release limits

conditions in the new conception:

•use limitations for 50 years (e.g. no agriculture)
•removal of all tubes
•release values as limits not as guidance
•final status survey
•inventory of Sr-90
•internal release procedure
•covering layer of unaffected soil
•monitoring program for surface water and groundwater

general clearance values and site specific release limits

nuclide	Germ. Rad. Protect. Ordinance		new conception	
	clearance values for unconditional clearance [Bq/g]		release limits for soil in-situ [Bq/g]	
	excavated soil (column 6)	soil surfaces (column 7)	near surface (< 30 cm)	subsurface (> 30 cm)
Co-60	0,09	0,03	0,64	90
Sr-90	2	0,002	0,15	40
Cs-137	0,4	0,06	0,20	2,80

establish site specific release limits

August1999	discovery of contamination under the storage pond
April 2001	conception by VKTA
April 2002	expert opinion
May 2002	application of admission to authority
June 2003	general confirmation from the authority
August 2003	allowance for the first remediation project

waste treatment centre

waste water neutralisation facility

- 1969 to 1999
- clean radioactive water with ion exchanger

Thank you for attention!

