Consideration of Non-radioactive Harmful Substances

Dr. Petra Steinbach, Matthias Bothe

Verein für Kernverfahrenstechnik und Analytik Rossendorf e.V.

PF 510119, 01314 Dresden, Germany matthias.bothe@vkta.de

harmful substances

inorganic:

- •metals
 - Cd
 - Cr
 - Hg
 - Pb
- asbestos
- rare substances
 - B
 - Be

harmful substances

organic:

- mineral oil hydrocarbons
- •polyvinyl chloride (PVC)
- polycyclic aromatic hydrocarbons (PAH)
- polychlorinated biphenyls (PCB)

Introduction

Atomic safety, radiation protection

- Ministry of the environment (Saxony)
- radiation protection at deconstruction
- monitoring, analysis of radionuclides for controlling

Environmental law

- Environmental Agency, Regional Commission
- environmental protection at deconstruction
- chemical analysis of harmful substances, also in materials with minor radioactivity

"Laboratory for Environmental and Radionuclide Analyses" of VKTA is accredited according to DIN EN ISO/IEC 17025 for radionuclide and conventional analysis

Procedure

environmental investigation parallel to radiological surveys

- historical research
- environmental investigation
 - buildings <u>before</u> deconstruction
 - underground structures during deconstruction
- sampling parallel at deconstruction
 - measurements for clearance (radiation protection)
 - chemical characterisation of demolition rubble, soil ... (environmental protection)
- chemical analysis of different matrices
- •estimation of analytical results in comparison with limit values to make a decision for waste management

Procedure

Environmental requirements taking into account of radiation protection

materials with minor radioactivity: clearance of materials in accordance with §29 Radiation Protection Ordinance (limit values of clearance)

unrestricted clearance

material can be recycled

restricted clearance

- removal (controlled landfill, combustion)
- •the way is restricted, fixed and allowed by authorithies

✓ remarks for occupational health and safety

Analysis

methods:

appropriate sample preparation for different materials; validation (chemical digestion, elution, extraction)

determination of inorganic parameters,

- •heavy metals in solids and eluats ICP-MS
- •pH, electric conductivity
- •anions IC, FIA

determination of organic compounds,

- •PAH (Polycyclic Aromatic Hydrocarbons) according EPA HPLC
- •hydrocarbon index GC
- phenol index
- •tensides FIA

Analysis

HPLC

ICP-MS

PAH

Importance of Polycyclic Aromatic Hydrocarbons (PAH)

- product of incompletely combustion of oil, coal, gas
- tar coating of buildings to protect against water
- old tar coatings: highly contaminated with PAH

PAH

characteristics

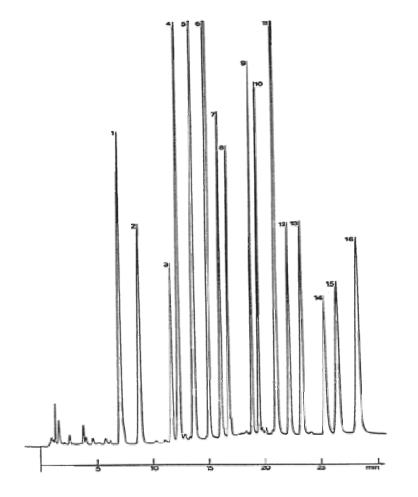
- •toxic, carcinogenic because of aromatical structure
- •minimal 2, maximal 7 rings of benzene
- •persistent

•limit values:

drinking water
0,2 μg/l (Σ PAH)

• ground water $0,2 \mu g/I (\Sigma PAH)$

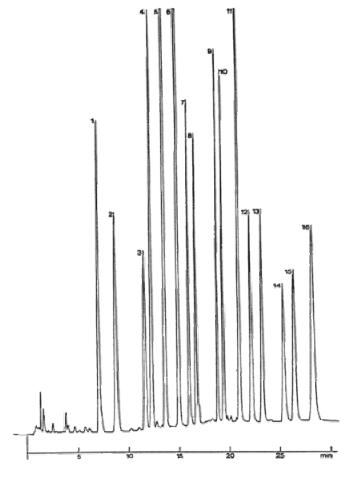
• soil 3 mg/kg (Σ PAH)


demolition rubble
1 mg/kg (Z0) up to

15 mg/kg (Z2 for utilization) (Σ PAH)

dangerous waste 1000 mg/kg (Σ PAH)

Analysis of Polycyclic Aromatic Hydrocarbons part 1



HPLC chromatogram of 16 EPA-PAH

Name	Summen- formel	Molare Masse	Prozent an Kohlen- stoff	CAS- Nummer	Struktur
Naphthalin	C ₁₀ H ₈	128,17 g/mol	93,75 % C	091-20-3	
Acenaphthen	C ₁₂ H ₁₀	154,21 g/mol	93,05 % C	083-32-9	
Phenanthren	C ₁₄ H ₁₀	178,23 g/mol	94,05 % C	085-01-8	
Fluoranthen	C ₁₆ H ₁₀	202,26 g/mol	95,0 % C	206-44-0	
Benzo(a)- anthracen	C ₁₈ H ₁₂	228,29 g/mol	94,45 % C	056-55-3	000
Benzo(b)- fluoranthen ^a	C ₂₀ H ₁₂	252,32 g/mol	95,2 % C	205-99-2	
Benzo(a)pyren ^a	C ₂₀ H ₁₂	252,32 g/mol	95,2 % C	050-32-8	
Dibenzo(a,h)- anthracen	C ₂₂ H ₁₄	278,35 g/mol	94,7 % C	053-70-3	000

Analysis of Polycyclic Aromatic Hydrocarbons, part 2

HPLC chromatogram of 16 EPA-PAH

Name	Summen- formel	Molare Masse	Prozent an Kohlen- stoff	CAS- Nummer	Struktur
Fluoren	C ₁₃ H ₁₀	166,22 g/mol	93,59 % C	086-73-7	
Anthracen	C ₁₄ H ₁₀	178,23 g/mol	94,05 % C	120-12-7	
Pyren	C ₁₆ H ₁₀	202,26 g/mol	95,0 % C	129-00-0	
Chrysen	C ₁₈ H ₁₂	228,29 g/mol	94,45 % C	218-01-9	
Benzo(k)- fluoranthen ^a	C ₂₀ H ₁₂	252,32 g/mol	95,2 % C	207-08-9	0008
Indeno- (1,2,3-cd)- pyren ^a	C ₂₂ H ₁₂	276,34 g/mol	95,6 % C	193-39-5	
Benzo(ghi)- perylen ^a	C ₂₂ H ₁₂	276,34 g/mol	95,6 % C	191-24-2	

ANMERKUNG Die Auswahl der 15 PAK entspricht der US EPA-Liste, unter Auslassung von Acenaphthylen, das nach diesem Verfahren nicht bestimmbar ist, da es nicht fluoreszenzaktiv ist.

Verbindungen, die in der Richtlinie 98/83/EG genannt sind.

tube system for radioactive waste water

history

- •40 years in use
- •acids, bases, organic solvents, poisons, radionuclides
- •tubes, inspection points, waste water tank
- •leakages
- •harmful substances also in building materials

removal of old tubes with leakages: soil, several types of tubes

tube system for radioactive waste water

results for tubes and soil:

harmful substances from operation

- •Hg in soil
- only punctiform
- advantageous hydrological circumstances,
- no radionuclides
- possible use for backfill

results for buildings:

harmful substances in "old" building materials

•waste water tank, ca. 60 m³ with protective coating outside

contamination

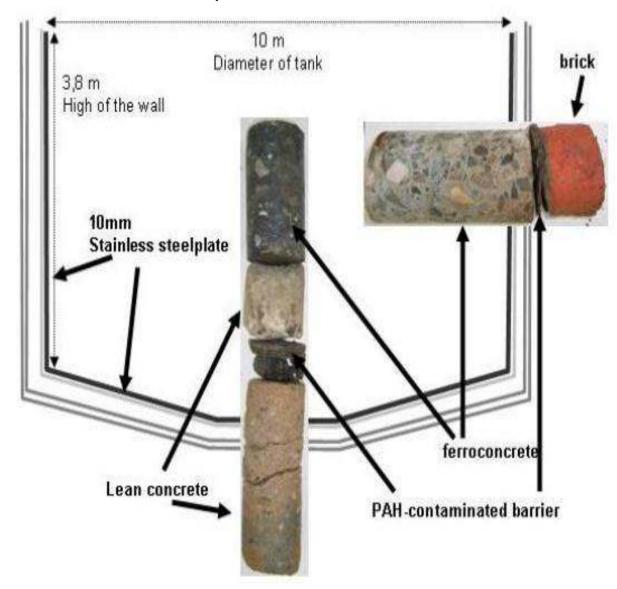
- •PAH (Σ EPA-PAH 6300 mg/kg),
- •mobile, eluate above inspection value for ground water

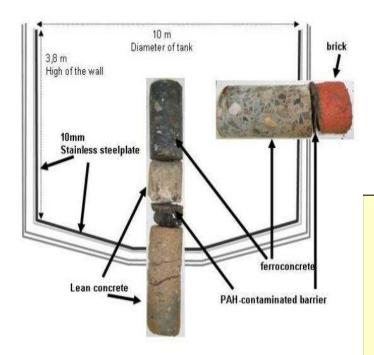
removal of protective coating, dangerous waste

history

- •40 years in use
- water with acids, bases, organic solvents, poisons ..., radionuclides
- •harmful substances in building materials?

Geb. 30.1 Geb. 30.2 Betriebsraum Regenwasser schacht


analysis:


- drilling cores of walls
- •several materials

results:

harmful substances in "old" building materials contamination:

- •PAH (Σ EPA-PAH 50 000 ...120 000 mg/kg) dangerous waste (> 1000 mg/kg)
- •mobile PAH 210 μg/l in eluate above inspection value (0,2 μg/l)
- serious danger for ground water

removal of the buildings

Thank you for attention!

