

IAEA Workshop Wire Saw Technology

Dipl.-Ing. Daniel Knecht

Technology and Management for the Decommissioning of Nuclear Facilities – Prof. Dr.-Ing. Sascha Gentes

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Content:

- 1. History
- 2. Function and arrangement
- 3. Areas of application
- 4. Classification
- 5. Tool

History

- First diamond wire saw was used in Carrara 1968
 - Experiments with a galvanic bonded diamond wire on a stationary system
- Commercialization in the 80's
- Use of diamond wire saws in almost all marble quarries in 1984
- Economic processing of the blocks instead of uncontrolled extraction by blowing

Carrara, Italy

David by Michelangelo

Function impulse

Wire Saw Technology

Dipl.-Ing. Daniel Knecht

11/23/2010

4

- Impulse occurs through hydraulic engine or electric motor
- Pneumatic cylinder holds the wire on tension

Procedure arrangement

Embracing procedure

5 11/23/2010 Wire Saw Technology Dipl.-Ing. Daniel Knecht

Procedure arrangement

Depth cut with blind bores

Areas of application

Stone quarry

circle wire saw

Disc cutting

7 11/23/2010 Wire Saw Technology Dipl.-Ing. Daniel Knecht

Areas of application

- Building industry
 - Dismantling of steel and reinforced concrete structures
 - Decommissioning of nuclear facilities
 - Underwater workings
 - **D**ry cut is possible \rightarrow advantage in areas poor in water

Decommissioning of offshore platforms, ship wrecks and submarines

8 11/23/2010 Wire Saw Technology Dipl.-Ing. Daniel Knecht

Classification

Pro

- High flexibility in application
- High cut performance
- Remote Handling
- Under water usable
- Low demand for drive power
- No restrictions in the cutting depth and the shape of the work piece
- Low setup- time and costs
- Low noise emission

Contra

- Large cut width (11 mm)
- Sometimes rough cut surface
- High Risk of tool cracks and so a risk of injury for people
- Preparation Drillings for fixing are necessary
- High tool costs

System dimensions

Construction diamond wire

1 m = 40 segments = 100 € +

11 11/23/2010 Wire Saw Technology Dipl.-Ing. Daniel Knecht

Cut through a diamond segment There are two kinds of production procedures **Sintered segment Galvanic segment** Suspension cable Diamonds Basic body ٥ Sintered Galvanic connection connection

Comparison diamond rope

Comparison diamond rope with galvanic or sintered segments

Automated wire saw technology for underwater disassembly (ASTU)

Promoted by the Federal Ministry of Education and Research

Technology and Management for the Decommissioning of Nuclear Facilities – Prof. Dr.-Ing. Sascha Gentes

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Contents:

- 1. Initial position and problem
- 2. Objectives of the research project
- 3. Test stand
- 4. First results
- 5. Outlook

1. Initial position and problems

The company Siempelkamp GmbH & Co.KG got the job of separating consoles in the nuclear fuel element basin in the nuclear power plant Obrigheim.

1. Initial position and problems

Demands

Separation of

austenitic material

- Applicable up to 8 m of water depth
- smooth cut surfaces
- Remote handling

1. Initial position and problems

It has be shown that the calculated cut time was crossed in practice around the 10-fold.

To make the process more predictable this project was initiated.

Selected procedure:

Wire saw

Preattempts and cold test were carried out in the test hall of the TMB.

18

2. Objectives of the research project

Test plan:

Material S235JR Attempt	Row 1	Row 2	Row 3
1	t ₁	t ₁	t ₁
2	t ₂	t ₂	t ₂
3			
4			
10			
11			

Afterwards the same program for stainless steel (1.4301)

19 11/23/2010 Automated wire saw technology for underwater disassembly

Dipl.-Ing. Daniel Knecht

2. Objectives of the research project

The following parameters are recorded :

- Wire speed
- Wire contact pressure
- Driving power
- Wire kind and construction
- Test sample (material and geometry)
- Water temperature
- Contact force in the entry and escape of the cut sample
- Size distribution of the filings

2. Objectives of the research project

From the ascertained data a model should be developed, that enables making predictions to the optimum cut parameters for different geometry and materials.

Cut time $t_s = f(v_c, F_s, P, S, G, k,...)$

3. Test stand

3. Test stand

23 11/23/2010 Automated wire saw technology for underwater disassembly Dipl.-Ing. Daniel Knecht

3. Test stand

24 11/23/2010 Automated wire saw technology for underwater disassembly Dipl.-Ing. Daniel Knecht

4. First results

Comparison Testrows

Automated wire saw technology for underwater disassembly 11/23/2010

Dipl.-Ing. Daniel Knecht

5. Outlook

- Completion stainless steel rows
- Cuts with partial samples
- Developing model
- Edge influence
- Composite geometries
- Create a method to classify wear of diamond wires

Thank you for your attention

27 11/23/2010 Automated wire saw technology for underwater disassembly

Dipl.-Ing. Daniel Knecht