

International Atomic Energy Agency

Application of the Graded Approach

S. Thierfeldt, Germany Workshop on Safety Assessment for Decommissioning of Research Reactors 4 – 8 October 2010, Risø, Denmark

Graded Approach to Safety Assessment Plan of the presentation

- Definition of the graded approach
- Aims of using a graded approach
- Items to be considered in a graded approach
- Complexity of safety assessment vs complexity of the decommissioning project
- Experience feedback from the DeSa test cases

Graded Approach to Safety Assessment Definition of the graded approach

- The need for a graded approach in safety assessments for decommissioning can be implemented according to:
 - The complexity of decommissioning activities:
 - multi-site facilities (facilities under decommissioning and in operation)
 - complex facilities (reprocessing plants for example)
 - facilities not designed to be easily dismantled (NPPs)
 - The implementation of a phased approach (step by step) to perform the dismantling operations (work packages), even for small facilities
 - The nature of the dismantling operations and the associated hazards are often different for each phase

Graded Approach to Safety Assessment Definition of the graded approach

- The graded approach in safety assessments for dismantling:
 - must be implemented without compromising the safety of the public, employees or facilities and adversely impacting the environment
 - should be commensurate with complexity and hazard potential of the facility and work to be performed
 - depends on type of facility / decommissioning phase
 - should reflect the evolution of the (radiological) hazard potential with progress of decommissioning

Graded Approach to Safety Assessment Definition of the graded approach

- Most Member States apply a graded approach in performing safety assessments
 - without following specific procedures
 - based on expert judgement
- IAEA DeSa Programme had a working group dedicated to the Graded Approach: GAWG
 - has defined the graded approach with respect to safety assessments
 - has analysed grading in DeSa Test Cases (NPP, RR, Laboratory)

Graded Approach to Decommissioning Definition of the Graded Approach

- Safety Guide on Safety assessment for decommissioning (WS-G.5.2.)
- "A graded approach is a process by which the level of analysis, the documentation and the actions necessary to comply with the safety requirements and criteria are commensurate" with:
 - the magnitude of any hazard involved
 - the particular characteristics of a facility
 - the step within the decommissioning process
 - the balance between radiological and non-radiological hazards

Aims of Using a Graded Approach

- A graded approach helps:
 - to identify the key areas of the assessment, those where the highest contribution to doses and risk are to be expected
 - to direct effort to these specific areas
 - to minimize the overall costs of the assessment
- No graded approach means the risk:
 - of wasting effort at irrelevant areas
 - of not paying enough attention to dose relevant analyses
 - of overlooking critical exposure pathways and scenarios

Graded Approach to Decommissioning Items to be considered (1)

- The particular characteristics of a facility,
 - the size and type of the facility (including its complexity)
 - the initial physical and radiological state of the facility:
 - shutdown after normal operation, after an incident or accident
 - shutdown following a long period of poor maintenance
 - uncertainty about the state of the facility (ageing may have compromised building structures or engineered safety measures)

Graded Approach to Decommissioning Items to be considered (2)

- The purpose and the scope of the safety assessment
 - the overall final decommissioning plan or a phase of the decommissioning plan
 - a part of a facility, a single facility at a multi-facility site or an entire site
- The uncertainty issues associated to the input data for the safety assessment
 - the quality of the characterization of the facility
 - the reliability and availability of relevant supporting information
 - e.g. drawings, records of modifications

Graded Approach to Decommissioning Items to be considered (3)

- Radiological hazards: source term
 - activity inventory of the facility
 - surface contamination, bulk contamination, activation
 - radiological characteristics
 - presence of short / long lived radionuclides, presence of alpha emitters
 - chemical and physical state of radioactive material
 - solid, liquid, gaseous; sealed sources; heat generating material, combustible material

Graded Approach to Decommissioning Items to be considered (4)

- Radiological hazards: events and sequences
 - likelihood of hazards and their potential unmitigated consequences, with account taken of site characteristics
 - seismic events, flooding, influences from or dependence on any neighbouring facilities
 - presence and type of potential initiating events for incident/accident sequences
 - human error, fire, flood, dropped loads, collapse or failure of buildings or structures, chemicals, temperatures
- Administrative issues:
 - requirements / criteria against which results will be assessed
 - end state of decommissioning (unrestricted / restricted use)

The DeSa Project Safety Assessment Process

Complexity of Safety Assessments to be Commensurate with Decommiss. Task

- The "level of complexity" (low, medium, high) is determined by the project team and documented according to the **graded approach** implemented.
- Guidelines (main items, criteria and priority) can be defined to help the team members in determining the overall level of complexity for a given project.
- Examples of "identified risk elements" and criteria (it is a non exhaustive list based on French feedback on decommissioning projects):

<u>1 - Project schedule</u> – defines how much time the project team has to complete the schedule:

- Everyone has as much time as they want.
- The schedule is somewhat compressed
- The schedule is very compressed or very critical

<u>**2**</u> - Interfaces – defines how many organizations are involved in project planning and/or execution:

- one to three
- four to seven
- greater than eight

<u>**3** - Experience/Capability</u> – defines the level of experience and capability of project team members:

- project has mainly experienced personnel
- a blend of experienced and inexperienced personnel
- the project is loaded with inexperienced personnel

<u>4 - Technology</u> – defines what degree of technical complexity will be faced by the project team in executing the project:

- utilize off-the-shelf technology
- buy something off the shelf and modify it; an engineered solution
- perform research and development (R&D) activities

<u>5 – Facility characterisation</u> – defines the level of environmental characterization that has been completed:

- fully characterized
- partially characterized and results indeterminate
- unknown characterization

<u>6 – Safety</u> functions – defines the safety issues the project team will encounter while completing the project:

- standard safety functions (confinement, radiation protection)
- increased diligence due to location or type of work, (inaccessible areas)
- very restrictive safety considerations (criticality).

<u>7 – Waste management</u> – defines the routes for the radioactive and conventional waste produced during the decommissioning works:

- Routes are available (clearance levels, storage and disposal),
- Main Routes are available and some particular waste have to be managed,
- Routes must be implemented.

<u>8 - Funding availability</u> – defines the availability of internal and external resources to plan and execute the project.

- Funding readily available
- Funding are somewhat restricted
- The project will be fund constrained impacting schedule and cost

<u>9 - Public involvement</u> – Indicates how much the public is involved in your project

- None just get it done
- Somewhat involved issue news releases as required

 Very involved – representative(s) part of project scope, schedule, cost, and quality decisions

- The level of complexity of the decommissioning project is the result of:
 - the level of risk per "identified risk element" (high risk, medium risk, low risk)
 - the priorities defined by the project team and applied within the "identified risk elements" (high priority, medium priority, low priority)
- Special attention should be given to:
 - overall level of risk of the decommissioning project (risk · priority)
 - the "identified risk element" for which high risk and high priority have been assessed

Application of Graded Approach DeSa Test Cases

- NPP, Research reactor and Laboratory Test Cases
 - Many areas where grading apparent
- Examples:
 - Descriptions of the surroundings of the three sites
 - graded according to potential off-site consequences
 - Description of the work packages/work steps
 - graded according to complexity of the work sequences
 - Radiological characterisation of the facilities
 - graded according to the available information on the radioactive inventory

Application of Graded Approach DeSa Test Cases (cont.)

- Examples (cont.):
 - Stocktaking of contaminated areas / masses performed:
 - in all three Test Cases to such a level that the decommissioning work could be adequately planned
 - required effort differed between the Test Cases
 - All dose calculations are graded according to the hazard potential:
 - dose assessment to workers: differences in number of scenarios to be analysed
 - dose assessments to public: differences in models for analysing dispersion of radionuclides in environment

