

International Atomic Energy Agency

Engineering analysis

S. Thierfeldt, Germany Workshop on Safety Assessment for Decommissioning of Research Reactors 4 – 8 October 2010, Risø (Denmark)

Safety Assessment Methodology

ENGINEERING ANALYSIS

- Safety Guide on Safety assessment for decommissioning (WS-G.5.2.) from 4.39 to 4.42
- Aim of safety assessment:
 - identify the safety functions related to decommissioning activities and associated structures, systems and components (SSCs)
- Safety assessment should determine whether the SSCs
 - are suitable and sufficient to achieve all functions assumed in hazard analysis
 - will achieve the required reduction of doses and risks with an appropriate level of confidence

ENGINEERING ANALYSIS

- The safety assessment should demonstrate that existing SSCs will continue to ensure associated safety functions as long as it is required by the decommissioning plan, taking into account:
 - ageing and other degradation mechanisms
 - implementation of the decommissioning activities
 - demolition of supporting walls,
 - creation of a dusty environment, etc.

ENGINEERING ANALYSIS

- The safety assessment should
 - identify any safety functions that require new engineered SSCs and
 - confirm that these will be suitable and sufficient to meet the relevant safety requirements and criteria
- The safety assessment should also identify any ongoing engineering requirements that need to be applied during decommissioning:
 - requirements for the inspection and controls
 - maintenance
 - testing of SSCs

Identification of Safety Related Systems, Structures and Components (SSCs)

What are SSCs and Why Identify Them?

- SSCs are all the engineered systems, structures and components that will have a safety related role during preparatory phase and implementation of decommissioning
- SSCs are identified to help ensure worker and public safety during decommissioning
 - often significantly different from 'operational' SSCs
 - provision of safety functions and associated SSCs should be performed by applying appropriate engineering codes and standards, commensurate with importance of safety function
- SSCs will often change as plant state changes
 - accurate change management will be required

Hierarchy of Safety Controls

- Preferred types of Safety Control Measures:
 - 1.Inherent Safety Features
 - 2.Passive Safety Features
 - 3.Engineered Safety Controls
 - 4.Administrative Controls
 - 5.Use of Personal Protective Equipment
- However: breach of containment at some stage of decommissioning becomes inevitable
 - dependence on administrative controls will become dominant

DeSa project: Research reactor test case

- Safety functions to be ensured during the conduct of the decommissioning activities of the research reactor are:
 - limitation of exposure to workers and the public
 - enclosure of radioactive material and avoidance of uncontrolled and unplanned release of radioactive material
- Safety related SSCs needed during decommissioning of the research reactor:
 - existing ventilation system,
 - existing fire detection system,
 - radiological monitoring system of the reactor hall
 - new storage cell to temporarily store radioactive waste
 - the existing reactor hall crane

Use of SSC Categories and Risk Classes

- SSCs to support specific decommissioning activities will be derived from detailed safety assessments.
- Classification and Categorisation of activities and SSCs is fundamental to a graded approach and minimisation of assessment work.
- Approach to safety and engineering assessment: essentially deterministic
 - categorisation and classification systems are used to define
 'Grading' in the level of assessment required
 - simple probabilistic tools can be used to good effect

Risk classification

Consequence Level	Beyond Extremely and Unlikely <10 ⁻⁶ pa	Extremely Unlikely 10 ⁻⁴ to 10 ⁻⁶ pa	Unlikely 10 ⁻³ to 10 ⁻⁴ pa	Anticipated 10 ⁻¹ to 10 ⁻³ pa
High Consequence	3	2 SAR	1 SAR	1 SAR
Moderate Consequence	4	3	2 SAR	1 SAR
Low Consequence	4	4	3	3

- **SSC Category 1** Those SSCs that are principle means for the prevention/mitigation of significant public exposure and major worker exposure. Typically applied for Risk Class I accident scenarios.
 - Requirement Engineering assessment to be supported by detailed engineering investigations and calculations, assessment against national engineering codes and standards, review of operational experience, specification of surveillance programme requirements and a demonstration of fitness for purpose in meeting functional requirements under accident conditions.
- Category 1 SSCs are not usually to be expected in a decommissioning safety assessment.

- **SSC Category 2** Those SSCs that make a significant contribution to the prevention/mitigation of decommissioning worker exposure, other workers on the site but a lesser public risk, where the risk is commensurate with Risk Class II accident scenarios.
 - Requirement The requirement is similar to SSC Category 1 items, but with an appropriately lesser level of detail in the engineering assessment.
- Category 2 SSCs may be required in decommissioning safety assessments, but will not be commonly found in decommissioning applications.

- SSC Category 3 Those that have only a minor contribution in the prevention/mitigation of worker exposure. Typically applied to Risk Class III accident scenarios.
 - Requirement The requirement will be to demonstrate adequate functionality and performance only based on records or/and a structured plant walkdown to demonstrate that the facility is in good condition and in accordance with engineering drawings.
- This will be the category of SSC often found in decommissioning safety assessments.

- SSC Category 4 Those that make only slight contribution to the prevention/mitigation of worker exposure. Category 4 SSCs may be applied in Risk Class IV accident scenarios.
 - Requirement The only requirement is to register the SSCs in the facility surveillance programme, and may only be required to be considered for response when they become not functional.

Alternative categorization

- Alternative categorization for engineered barrier providing mitigation of potential consequences
 - Category 1 > 250mSv to workers or >10mSv to the public
 - Category 2 range of 20 250mSv to workers or 0.1 10mSv to the public
 - Category 3 range of 2-20 mSv to worker or 0.01 0.1mSv to the public, i.e. minor consequences
 - Category 4 < 2mSv to worker or <0.01mSv to the public, i.e. insignificant consequences
- For a typical decommissioning project:
 - none of the SSCs in category 1
 - few SSCs would be in Category 2 (e.g. ventilation failure alarm, respiratory protective equipment etc.)

International Atomic Energy Agency

