Planning, Cost Estimates, Funding, Budgeting: Overview and Interrelation

Ernst Warnecke; IAEA / NSRW

R²D²Project: Workshop on "Cost Estimates" PNRI, Manila; 30 March-03 April 2009

Contents (I)

- Objectives of the lecture
- Purpose of the cost estimate
- Key aspects / terms
- Overriding Principles
- Planning
- Contents of a cost calculation
- Types of costs
- Methods of cost calculation
- Elements of a cost calculation

Contents (II)

- Funding
- Funding uncertainties
- Major cost factors
- Comparability of cost calculations
- Summary
- References

Objectives of the lecture

- Understand the importance of an early, good and reliable cost estimate
- Identify and understand key components of a cost estimate
- Identify factors that have a major influence on the overall decommissioning costs
- Understand the importance of funding
- Be aware of uncertainties involved
- Recognise that plan, costs, funds and budget are interrelated

Purpose of the Cost Estimate

- To determine the necessary funds
- To ensure that adequate funds are available when needed
- To ensure safety and satisfy regulatory requirements
- To implement a link to decommissioning plan
- To show that cost calculation is one of the planning / decision making tools
- Note: Always include licensing costs!

Key aspects / terms

- <u>Planning</u>: aiming at a final decommissioning plan with the necessary level of detail
- <u>Cost calculation</u>: determining the amount of money necessary to execute the decom. plan
- <u>Funding</u>: Make provisions early in advance for having funds available when needed
- <u>Budgeting</u>: Monetary plan for financing the execution of a decommissioning plan
- There are interrelations between planning and cost calculation / funding

Planning (I)

- Planning is a prerequisite for cost calculation
- Cost calculation and funding are important prerequisites for safety
- No plan → No cost calculation → No funds → No safety!
- An overall decommissioning plan identifying the major decommissioning steps (work breakdown) has to be prepared and licensed
- These major decommissioning steps have to be planned and licensed on a logical time line

Planning (II)

- Many (strategic) decisions are to be taken during planning (logical sequence, technical means, ...)
- Ensure an 'integrated approach', i.e. that everything fits together from the beginning to the very end, without foreclosing options
- Planning includes the evaluation of options, based on safety + proven technology

Contents of a Cost Calculation

- Description of the overall facility
 - Portions included in the cost estimate
- All assumptions
- Summary of information by major task
 - Cost
 - Man-hours and labor categories / Staffing levels
 - Amounts of materials and waste (volume, activity)
 - Uncertainties and contingencies
 - Cost to allow independent review
 - Funding mechanisms
 - Licensing

Types of Costs (I)

- Activity dependent costs, e.g.
 Fuel management, characterisation, decontamination, clearance, dismantling, transport, waste management
- Local labour costs
 - Base rate, holiday, sick time, unemployment, tax, overheads, profits
 - Labour levels: supervisor, engineer, technician, ...
- Equipment costs

Purchase or rental, operation, maintenance, ...

Types of Costs (II)

- Waste management costs
 Decontamination, volume reduction, conditioning, transport, storage, disposal
- Other or 'undistributed' costs
 Energy
 Protective clothing
 Dosimetry and equipment (personnel, environment),
 Environmental survey: sampling, laboratory, QA, ...
 Licenses: decommissioning, waste, termination, ...
 Training

Methods of cost calculation (I)

1. Unit Cost factor approach

- Applicable to large volumes of similar material (e.g. concrete) or equipment (e.g. piping)
- Unit cost factors incorporate <u>local</u> labor rates and productivity, equipment and material costs
- Example of output
 - Costs for the removal of a m³ of concrete
 - Costs for cutting/ removing a meter of piping
 - Cost for clearing a ton of material
 - Cost for conditioning of a m³ of waste

Cost for storage or disposal of a m³ of waste

Methods of cost calculation (II) Unit Factor Example

Removal of piping - 2 to 10 cm diameter, insulated, contaminated Contaminated pipe with a diameter of 2 to 10 cm will be cut with a reciprocating saw. The pipe will be cut into nominal 2 meter lengths during removal. The pipe will be placed into containers and sent to a shipping area. The insulation (5 cm fiberglass) will be removed and packaged for disposal.

				Labor Category 1 Title: Laborer \$25.00		\$25.00	Labor Category 2 Title:			Total Activity		
Activity Description =======	Activity Duratior =====	n PLF ===	Adjusted Duration ======	# of Workers ======	Man Hours =====	Base Cost ====	# of Workers ======	Man Hours =====	Base Cost ====	# of Workers ======	Man Hours ====	Base Cost ====
Prepare area Remove insulation Remove pipe hangers Cut pipe Load pipe in container	10 15 10 5 2 Total du	1.52 2.09 1.52 1.52 1.52 ration or or	15.2 31.4 15.2 7.6 <u>3.0</u> 72.4 min/ 2 meter 1.21 hr/piece 0.60 hr/meter	2 2 1 2 1 r piece	0.51 1.05 0.25 0.25 0.05	12.67 26.25 6.33 6.33 1.25 Supervis	sor ratio Subtotal Overhea	Craft La 5:1 rate labor d & profit	bor \$45.00/hr t @ 0%	2 2 1 2 1	0.51 1.05 0.25 0.25 <u>0.05</u> 2.11 <u>0.42</u> 2.53 <u>0</u>	12.67 26.25 6.33 6.33 <u>1.27</u> 52.85 <u>18.90</u> 71.75 0
or			2.53 man-nours/p	neter	Equipmo Consum Saw Bla Absorbe Bag for	ent Costs ables/Ma des ent materi insulation Total ec	Subtotal Overhea	d & Profi cost	4 sq m (.1 @ 2 sq m@ 1 @ t on equip	@ \$2.00/s \$1.00/bla \$5.00/sq \$0.25 ea oment @ ^	2.53 q m ade m ich	8.00 0.10 10.00 <u>0.25</u> 18.35 <u>1.84</u> 20.19
IAEA				Total Task Cost to Remove Pipe or							\$91.94 /piece ₁₃ \$45.97 /meter	

Methods of cost calculation (III)

2. Activity specific approach

- Applicable to individual activities that will not be repeated many times
- Estimates should provide all the details necessary to understand and later trace back the logic
- Staffing, equipment and other costs are to be included

Methods of cost calculation (IV) Activity Specific Approach

Example of an activity specific calculation:

Mobilizati	on:										
	Rate/		Hours/		Sub	50%	15%				
	<u>Hour</u>	Number	Day	Days	Total	Overhead	Profit	<u>Total</u>			
Laborer	25.00	3	8	10	6000	3000		9000			
Superviso	or45.00	1	8	10	3600	1800		<u>5400</u>			
Total								14,400			
Equipment / Direct Costs:											
	Transport	tation of eq	uipment	5000	2500		7500				
	Misc. Sup	plies		2000	1000		3000				
Temporary office & lab trailer											
	(setu	p and initial	month re	ntal)	10000	5000		<u>15000</u>			
Total								25,500			
Grand total											

Elements of a Cost Calculation (I)

- 1. Controlling information: to provide the basic details of the cost estimate
- End product requirements
 - What type of information is expected from the cost calculation?
 - Examples

Total project costs; costs allocated to the elements of the work breakdown structure; man-hours; labour costs; cost for removal of contaminated or clean equipment; costs for removal of building structures; costs for waste conditioning / storage / disposal

- Site specific information relevant for cost calc.
 - Property records, site drawings, site description

Elements of a Cost Calculation (II)

- Local radiological conditions or profiles
- Local labour and equipment costs
- Assumptions used in cost calculations
 - Work hours per day
 - Local labour rates
 - Fuel disposition and shipping schedule
 - End of life activation / contamination estimates
 - Hazardous materials (e.g. asbestos) at shut down
 - Waste minimisation, amounts, storage, disposal
 - Date of shut down
 - Expected end state (feasibility of decontamination)

Elements of a Cost Calculation (III)

- Regulatory constraints
 - Levels for removal from control / clearance
 - Re-use issues
 - Fuel and waste policies
 - Radiation protection / optimisation constraints
- Site survey / radiological profile
 - \rightarrow The better the data the better the estimate
 - Extent of activation + contamination / decontamin.
 - Identific. of contaminated systems / components
 - Needs for protection of workers (shielding, tent ...)
 - Requirements for packaging, transport, storage ...

Elements of a Cost Calculation (IV)

2. Cost calculations

- Define activities and sequence
 - 'Mobilisation'
 - Training
 - Removal of contaminated equipment, incl. 'trash'
 - Decontaminate or remove contaminated structures
 - Remove activated structures
 - Final survey
 - Release clean structure
 - Prepare detailed sequence of activities

→ The more detailed / the better the cost calculation
IAEA

Elements of a Cost Calculation (V)

- 'Material takeoff' sheets
 - Provide an inventory of equipment and materials
 - Can be prepared on a room by room basis or by system
 - Sheets typically contain:
 Equipment to be decontaminated or just removed Materials of construction
 Volumes / amounts of material by type
 → important for unit cost factor approach

Elements of a Cost Calculation (VI)

Develop cost of activities

Large number of similar tasks:

- use unit cost factor approach
- apply to system or component Example:
 2500m of 2-10cm diameter insulated and contaminated steel pipe with X \$ per meter
- summarise costs by system or component

Unique items / tasks:

- e.g. remote cutting of reactor vessel:
- break task down to steps
- calculate costs per step

Elements of a Cost Calculation (VII)

- Develop a decommissioning schedule
 - Driven by availability of funds and manpower
 - Identify 'critical' tasks ('showstoppers')
 - Develop a logical sequence of activities
 - Perform tasks in parallel, if possible
 - Perform non-critical tasks if staff is 'idle'
 - Apply shortest possible schedule
 - Determine the funds needed per budget year
 - Expect surprises (unexpected contamination, incidents, mistakes, licensing issues ...)
 - Re-schedule, as required

Elements of a Cost Calculation (VIII)

Other Costs

- Do not forget to calculate costs not directly associated to the dismantling activities, e.g.
 - · Management costs
 - Licensing costs (preparation of applications, costs of the regulator and independent experts involved)
 - · Energy costs
 - Insurance
 - · Health Physics supplies

Elements of a Cost Calculation (IX)

Contingencies

- Cost calculations cannot be that precise
 Contingencies should provide a better assurance that sufficient funding is available
- Unknown / unforeseen costs may occur
 -NOT a safety factor for poor planning, but a coverage for bad weather, labour disputes ...
 -Contingencies can be added to each task or placed on the total

-Amount depends on maturity of the planning

Elements of a Cost Calculation (X)

- If dismantling is deferred do not forget facility and site maintenance costs
- At the end, a cost calculation should
 - contain a summary stating the total costs
 - Provide all the required information, e.g. man-power costs, materials management costs / waste management costs, including conditioning, storage and disposal

Funding (I)

- Purpose: To have money available covering the liabilities remaining after operation
- Mechanisms:
 - Depends on national legal / regulatory framework
 - 'Polluter Pays' principle is widely applied
 - Private operations:
 - · Payment prior to start of operation
 - Collection of money during operations
 - · Who controls funds: operator, third party, State
 - · How to invest to minimise the risk of loss

Funding (II)

- State operations:
 - · Government typically self-insures its facilities
 - · Providing of funds through annual State budget
 - Statement of intent from the government
 - · Often funds are not available when needed
 - Early cost estimates
 - Early submission (e.g. 5-10 years in advance) of decommissioning expenses for inclusion into the State budget
- In any instance: Final (financial) responsibility is with the State!

Funding Uncertainties (I)

- Uncertainties are associated with:
 - Long time scales and deferral of dismantling, e.g. safe enclosure
 - Precision of planning and of the cost calculation
 - Variation of currency exchange rate (see next slide)
 - Inflation / increase of prices and wages
 - Variation of interest rates / credit risks
 - Discounting (in private operations)
 - Proper liquidity planning
 - Economic stability / market risks
 - Practical decommissioning experience (first object)
 - Early shut down of a facility

Funding Uncertainties (II) Exchange rate US\$ per Euro (2008/09)

Funding Uncertainties (III)

- Conditioning of waste, in particular in the absence of waste acceptance requirements for disposal
- Storage of waste (for how long?)
- Disposal of radioactive waste, in particular in cases without disposal plans
- Changes in the legal / regulatory framework (e.g. clearance levels)

Major Cost Factors

- Manpower costs
- Materials management / radioactive waste processing
- Radioactive waste disposal

Comparability of Cost Calculations

- Decommissioning cost are quite variable
- It is often difficult to compare cost calculations
- There are many factors that cause differences
 - Size / type of reactor and operating history
 - Scope of the decommissioning activities, (complete costs, e.g. from fuel management to waste disposal)
 - Differences in national labour costs
 - Differences in labour productivity / effectiveness
 - Differences in approaches to waste management
 - Decommissioning strategy (immediate or deferred)
 - Fluctuations in exchange rates

Use utmost care when comparing costs

Summary

- Cost calculation methodologies are available
- Good planning is a prerequisite for good cost calculations
- Good cost calculations are a prerequisite for funding, i.e. having the required funds available when needed
- Regular updates are necessary for planning and cost calculation
- Uncertainties in costing / funding have to be properly managed
- An early provision / request for the necessary funds is vital, including a funding timeline

References (I)

IAEA Safety Standards Series

- IAEA WS-R-5: Decommissioning of Facilities Using Radioactive Material (2006)
- IAEA WS-R-2: Predisposal Management of Radioactive Waste, Including Decommissioning (2000)
- IAEA WS-G-2.1: Decommissioning of Nuclear Power Plants and Research Reactors (1999)
- IAEA WS-G-2.2: Decommissioning of Medical, Industrial, and Research Facilities (1999)
- IAEA WS-G-2.4: Decommissioning of Nuclear Fuel Cycle Facilities (2001)
- IAEA RS-G-1.7: Application of the Concepts of Exclusion, Exemption and Clearance (2004)
 http://www-pub.iaea.org/MTCD/publications/publications.asp

References (II)

- IAEA WS-G-5.1: Release of Sites from Regulatory Control on **Termination of Practices (2006)**
- IAEA WS-G-5.2: Safety Assessment for the Decommissioning • of Facilities Using Radioactive Material (2009)

IAEA Safety Reports

- IAEA Safety Report No. 45: Standard Format and Content of • Safety Related Decommissioning Documents (2005)
- IAEA Safety Report No. 50: Decommissioning Strategies for • Facilities Using Radioactive Material (2007)

IAEA Technical Reports

 IAEA TRS No. 462: Managing Low Radioactivity Material from the Decommissioning of Nuclear Facilities (2008) EA 35

References (III)

- IAEA TRS 446: Decommissioning of Research Reactors: Evolution, State of the Art, Open Issues (2006)
- IAEA TRS 395: State-of-the-Art Technology for Decontamination and Dismantling of Nuclear Facilities (1999)

IAEA TECDOCs

- IAEA TECDOC-1322: Decommissioning Costs of WWER-Type Nuclear Power Plants (2002)
- IAEA TECDOC-1476: Financial Aspects of decommissioning (2005)
- IAEA TECDOC-1478: Selection of Decommissioning Strategies: Issues and Factors (2005)
- IAEA TECDOC-1572: Disposal Aspects of Low and
 Intermediate Level Decommissioning Waste (2008)

References (IV)

• IAEA TECDOC-1602: Innovative and Adaptive Technologies in Decommissioning of Nuclear Facilities (2009)

Other

- EC, IAEA,OECD/NEA: A Proposed Standardised List of Items for Costing Purposes in the Decommissioning of nuclear Installations (1999)
- OECD/NEA: Decommissioning Nuclear Power Plants: Policies, Strategies and costs (2003)
- OECD/NEA: Decommissioning Funding: Ethics, Implementation, Uncertainties - A Status Report (2006)
- OECD/NEA: Selecting Strategies for the Decommissioning of Nuclear Facilities - A Status Report (2006)

THANK YOU

