

International Atomic Energy Agency

Decommissioning of Nuclear Facilities

Waste and Spent Fuel Management

Lawrence E. Boing

IAEA Regional Workshop Manila, The Philippines September 15-19, 2008

Lesson Objectives

- Describe the requirements and methods for managing waste from decommissioning
- Review IAEA waste classification system
- Review waste streams that might be encountered during decommissioning
- Review waste characterization
- Review waste management practices

<u>NOTE</u>: This lesson has been modified to reflect both a summary of 'conceptual' material and practical considerations

Radioactive Waste Programme Objectives

- Prevent unauthorized release of radioactive material
- Recognize the need for distinct radioactive waste vs. non-radioactive waste management streams
- Reduce waste volume
- Segregate wastes into categories for processing, disposition and transport
- Manage waste in accordance with optimization principles
- Assure that final waste products meet requirements for off-site treatment, transport and ultimate disposition

Radioactive Waste Programme Objectives

- Must maintain on-site waste management and control systems – whether original plant or temporary systems
 - Gaseous effluent controls and monitoring
 - Liquid waste processing and monitoring
 - Solids management systems
 - Secondary waste management systems

Typical Methods to Manage Decommissioning Waste

Waste and Spent Fuel Management

IAEA Solid Radioactive Waste Classification System

Waste Classes	Typical Characteristics	Disposal Options
Exempted Waste (EW)	Activity levels at or below national clearance levels which are based on an annual dose to members of the public of < 0.01 mSv	No radiological restrictions
Low and Intermediate Level Waste (LILW)	Activity levels above clearance levels and thermal power below about 2 kw/m ³	Near surface or geological disposal facility
 Short Lived Waste (LILW-SL) Long Lived Waste (LILW-LL) 	Restricted long lived nuclide concentrations. Limitation of long lived alpha emitting nuclides to 4000 Bq/g in individual waste packages and an overall average of 400 Bq/g per waste package	Near surface or geological disposal facility Geological disposal facility
	exceeding limitations for short lived waste	
High Level Waste (HLW)	Thermal power exceeding 2 kw/m ³ and long lived nuclide concentrations exceeding limitations for short lived waste	Geological disposal facility
Waste and Spent Fuel Management 6 International Atomic Energy Agency		

Radioactive Waste Example Costs for Research Reactor Decommissioning

Total Reactor & Systems D&D of \$ 8 Million

<u>Note</u>: An additional \$ 6 Million is associated with labs, office complex and control room for a total decommissioning of \$14 million.

Waste and Spent Fuel Management

International Atomic Energy Agency

Typical Waste Streams

Waste Categorization

- Low activity
- Intermediate activity (short and long lived)
- High Activity
- Low Specific Activity (LSA) Waste Classifications
 - LSA-I
 - LSA-II
 - LSA-III

Package Categories

- Type A
- Type B (U)
- Type B (M)
- Type C
- Industrial Type 1
- Industrial Type 2
- Industrial Type 3

Primary Decommissioning Waste Streams

- Higher levels of contamination/activation
 - Larger metallic waste (reactor internals, pressure vessel, primary coolant pumps)
- Low to mid levels of contamination
 - Metallic waste (smaller pumps, tanks, piping, valves, structural supports)
- Concrete waste
 - Activated as well as surface and subsurface contaminated
- Lightly contaminated compactable material (insulation, asbestos)
- Burnable waste (protective clothing, wood)
- Special waste (contaminated lead, mixed waste)

Typical Waste Streams

- Hazardous Non-Radioactive Waste
 - Asbestos
 - Poly-Chlorinated Biphenols (PCBs) – transformers, paints, etc.
 - Heavy metals (Pb, Zn, Ag, Hg, Cd, etc.)
 - Solvents
 - Chemical listed material
 - Toxic substances
 - Corrosives

Waste and Spent Fuel Management

Mechanical / Electrical Equipment

- Glove boxes
- Pumps, valves, fitting
- Exhaust ventilation/hoods
- Piping (exposed and embedded)
- Ducting
- HVAC
- Transformers/motors
- MCC's, duct chases, electrical cables
- Waste management systems
- Hot laboratories facilities
- Cranes, handling equipment
- Hot machine shops and fabrication/maintenance
- Fuel pool equipment and systems

International Atomic Energy Agenc

Interior facility floor drains, sumps

Waste and Spent Fuel Management

Exterior drainage and storm sewers

Contaminated soil (under concrete slabs)

Secondary Waste Streams

- Characterization waste
- Preparation waste
- Decontamination waste
- Contaminated tools and equipment
- Protective clothing
- Shielding material

Characterizing Waste Streams

- The goal of waste stream characterization is to estimate the radionuclide concentrations in order to support proper waste packaging, transport and disposal
- Sampling
 - Non Intrusive
 - Contact dose
 - Fixed and smear sampling
 - Intrusive
 - Grab samples
 - Crud samples
 - Materials scrapings
- Methods of assay
 - Gamma spectroscopy
 - Liquid scintillation
 - Gross alpha or beta

Characterizing Waste Streams

- Direct sampling of every package the most precise, however is often very time consuming and expensive
- Must sample/analyze representative media from waste stream, validate the homogeneity of the waste stream
- Determine waste geometries (drums, boxes, sea vans)
- Model using shielding codes/calculations to correlate measured variable to package nuclide concentrations

International Atomic Energy Agenc

Characterizing Waste Streams

Inventory of waste packages

- Segregate low and high level wastes
- Maintain accurate records of inventory
- Maintain accurate records of disposal
- Try to handle only once place waste into ultimate disposal container

• Lessons learned

- Watch for cross contamination
- Source check instruments at the beginning and end of shift
- Use correct instruments for expected radiation types
- Training for personnel use consistent survey techniques
- Activation analysis assumes material used is known

Waste Treatment and Conditioning

- Conditioned waste characteristics
 - Monolithic
 - Homogeneous
 - Low contaminant leaching
 - Good stability
 - Good mechanical strength

Solid Waste Treatment Options

- Consist primarily of volume reduction (VR) and decontamination
- Volume Reduction
 - Compaction VR of 2:1 to 5:1
 - Supercompaction VR of up to 12:1
 - Compaction concerns: need for controlled ventilation, dealing with wet, explosive or pyrophoric wastes, and compaction resistant or irregularly shaped objects

Solid Waste Treatment Options

- **Decontamination technologies**
 - Chemical decontamination agents
 - Solvents, detergents, surfactants
 - Acids or alkalis
 - Complexing or chelating agents
 - Oxidizers
 - Physical decontamination
 - Dry abrasive blasting
 - Grinding and rotary hammers
 - Blasting with nonabrasive media
 - Metal melting specialized usage International Atomic Energy Agen

Waste and Spent Fuel Management

Solid Waste Treatment Options

- Other Volume Reduction Options
 - Shredding units VR of 3:1
 - Baling units used to improve ease of waste handling
 - Incineration VR up to 100:1
 - Incineration concerns primarily waste segregation issues
 - Corrosive material
 - Non-combustibles
 - Explosives and pyrophorics
 - Medium and high level waste
 - Ash handling

International Atomic Energy Agency

Liquid Waste Treatment Options

- Filtration primary means to remove suspended solids
- Ion exchange resin (bead or resin) a key means to remove solids and ionic species – can be adversely affected by surfactants, organics or chelating agents potentially used in plant decontamination
- Evaporators useful in some applications diminished effectiveness if suspended solids are present
- Solidification direct encapsulation in concrete or absorption

International Atomic Energy Agenc

Gaseous Waste Treatment Options

- Filtration is the primary treatment as radioactive decay will typically limit effectiveness or need for gaseous system delay holding tanks and carbon banks for iodine removal.
- May still need moisture separators for gaseous tritium removal

Waste Volume Reduction Considerations

- Compaction
- Broker secondary segregation

Waste and Spent Fuel Management

International Atomic Energy Agency

Waste Volume Reduction Considerations

- Resin technology
- Decontamination methods for low waste generation

Waste Volume Reduction Considerations

Material recycling

Waste Storage

- Interim (low and intermediate activity waste stored on site)
 - Criteria for radiation protection
 - Facility protected from the elements
 - Packaged waste stored outdoors
 - Weather deterioration
 - Animal intrusion

Waste Storage

- Long term storage (low and intermediate activity waste on-site or other non-disposal site)
 - Waste Acceptance Criteria (WAC)
 - Waste forms, assay and inventories
 - Waste packaging and compliance to IAEA transportation regulations
 - Criteria for radiation protection
 - Facility/waste packages protected from the elements

Spent Fuel Storage

- Management Options
 - Typical spent nuclear fuel re-processor
 - Consolidation or offsite transfer to country of origin
 - Dry storage cask
 - Wet storage pool
 - On-site storage

Traditionally spent fuel management is not considered a part of decommissioning

- Packaging considerations
 - Facility handling and storage requirements
 Exposure control
 - Compatibility and corrosion resistance
 - Packaging ventilation
 - Adequate fire resistance
 - Ease of decontamination
 - Integration with facility material handling equipment
 - Off-site transportation

International Atomic Energy Agenc

- Classification of Waste for Transport
 - Amount of radioactivity present
 - Types of radionuclides present
 - Distribution of radioactivity in waste
 - Chemical hazards

- Handling, lifting methods
 - High gamma source material
 - Ingestion risk material
 - Reactor internals, size reduction & cutting tools
 - Rigging (bells, shields, underwater lifting)

- Interim storage
- Final assay, documentation/manifesting
- Transportation rail, truck, barge

Waste and Spent Fuel Management

Final disposal

Waste Packaging and Handling– Overall Issues

- Package shielding requirements
- Size and shape of package
- Special transport requirements (e.g., heavy loads or barges)
- Exclusive or non-exclusive use shipment
- Weight of package often limiting factor

Waste Transport Issues

- Packaging type
 - Industrial Package
 - Shielded cask
 - Surface contaminated object
 - Strong tight container
- Radiation limits
 - Package surface
 - Transport (driver and public exposure)

Waste Disposal

- Waste Acceptance Criteria (WS-R-1)
- Waste documentation –radiological assay and inventories, shipping papers
- Waste packaging and compliance with IAEA Transportation Regulations
- Engineered waste disposal facilities radiological and non-radiological

Typical waste disposal cells

International Atomic Energy Agenc

Waste Disposal Considerations

- Disposal facility availability
- Site handling capability
- Cost
- Waste acceptance criteria
- Political considerations
- Regulatory
- Transportation Issues

Nuclear Reactor on Transporter

Waste Disposal Considerations

- Primary concern is preparation of waste in order to meet disposal facility WAC
- Disposal concerns
 - Compatibility of waste with surrounding media
 - Chemical, mechanical, biological, thermal and radiation stability
 - Low leach rate of contaminants
 - Solid form with low dispersability
 - Radionuclide activity and concentration

Waste Disposal Considerations

- Disposal Concerns (cont'd)
 - Gas generation (radiolytic, biological, chemical)
 - Presence of explosive or pyrophoric material
 - Presence of free standing liquids
 - Chelating agents or organic complexing agents
 - Presence of hazardous material
 - Chemical durability
 - Nuclear criticality

Waste Disposal

 Typical low and intermediate waste disposal cell

- Get the projected volumes right waste costs a project money
- Understand the Waste Acceptance Criteria and required certifications
- Perform the decommissioning with the end waste package in mind
- Expect "hidden" contamination
- Work for packaging efficiency (weight or activity based)
- Expect questions from stakeholders

- Where possible, use treatment options that are simple, efficient, environmentally friendly and readily available
- Plan for needed use of cranes, package shielding or casks and material handling strategies
- Engineer the waste sizing based on worker efficiencies as well as packaging and transport constraints
- Water turbidity (when performing underwater decontamination, cutting, grinding)
- Plan for releases where not expected

- Develop a low-level waste management plan which is based on a comprehensive site characterization effort
- Initiate advance planning projects for major end items (large component removal) if possible as a disposal option
- Include waste packaging,transport and disposition as part of the up-front planning process for all system and equipment removal activities
- Carefully evaluate material flow so as to have sufficient staging and lay-down areas
- Develop working rapport with waste storage or disposal site staff

- Develop a comprehensive plan to address the complex technical and regulatory issues for the unrestricted release of material
- Address hazardous waste, mixed waste, and secondary waste in the low-level waste management plan
- Remain cognizant of regulatory requirements, available waste disposal options, and waste acceptance criteria for waste disposal sites
- Develop strategies for the long term storage of radioactive waste which cannot currently be disposed (e.g., spent nuclear fuel)

International Atomic Energy Agency

Summary

- Radioactive Waste management is all about optimization via
 - Minimizing costs
 - Minimizing exposure to on-site workers
 - Minimizing volume of waste requiring disposal through volume reduction, super-compaction, incineration, consolidation
 - Survey and release (clearance)
 - Use of alternative materials
- Waste management system design must meet facility requirements and treatment goals

Summary

- Waste management planning must address all phases of operations and proceed from defined objectives
- Treatment systems must be tailored for specific waste streams
- Selection of waste packaging must address onsite use and storage and offsite transport
- Must consider final waste disposal requirements
- Success is in the planning and use of an optimized process !!!

International Atomic Energy Agency

References

- Joint Convention
- IAEA SF-1, Safety Fundamentals
- IAEA Safety Requirements WS-R-1, Near Surface Disposal of Radioactive Waste
- IAEA Safety Requirements WS-R-2, Predisposal Management of Radioactive Waste including Decommissioning
- IAEA Safety Requirements WS-R-5, Decommissioning of Facilities Using Radioactive Materials
- IAEA Waste Safety Guides WS-G-2.1, Decommissioning of Nuclear Power Reactors and Research Reactors
- IAEA Waste Safety Guide WS-G-2.2,

http://www-pub.iaea.org/MTCD/publications/publications.asp

References

- IAEA Waste Safety Guide WS-G-2.3,
- IAEA Waste Safety Guide WS-G-2.4,
- IAEA Waste Safety Guide WS-G-2.5, Predisposal Management of Low and Intermediate Radioactive Waste Including Decommissioning
- IAEA Waste Safety Guide WS-G-2.6,
- IAEA Waste Safety Guide WS-G-6.1,
- IAEA Waste Safety Guide No. 111-G-1.1, Classification of Radioactive Waste (1994)
- IAEA Technical Report Series No. 440

References

- IAEA DD740
- IAEA Safety Report Series 44
- TECDOC 1521, Characterization, Treatment and Conditioning of Radioactive Graphite from Decommissioning of Nuclear Reactors
- TECDOC 1572, Disposal Aspects of Low and Intermediate Level Decommissioning Waste
- TRS 441, Management of Problematic Waste and Material Generated During Decommissioning of Nuclear Facilities
- IAEA Waste Safety Guide No. 111-F, The Principles of Radioactive Waste Management (1995)
- IAEA WS-G-5.1 Release of Sites from Regulatory Control on Termination of Practices
- IAEA Technical Reports Series No. 401, Methods for Minimization of Radioactive Waste from Decontamination and Decommissioning of Nuclear Facilities (2001)