Decontamination and Dismantling techniques

> Tom McCool Project Manager SURR/ ICI Triga Research Reactor Decommissioning Projects

9/24/2008

Agenda

- Why decontaminate
- Factors which influence selection of methods
- Techniques for metal
- Techniques for concrete
- Practical experience
- Possible options for PRR-1
- Video
- Questions

Why Decontaminate

- Reduce radiation exposure
 Reduce volume of active waste
 Salvage equipment
 Reduce overall waste disposal costs

 Free release waste disposal \$100/ M³
 Low Level waste disposal \$5000/ M³
 - Intermediate level waste\$1 000 000/ M³

Factors which Influence Methods

Safety

- Method should not increase radiation hazard to worker, external / internal dose
- Efficiency
 - Method should be able to remove activity to enable reduction in waste disposal category

Cost Effectiveness

- Will the reduction in waste disposal costs be greater than the cost of decontamination
- Waste Minimisation
 - There's no point in generating 10m³ of secondary waste to decontaminate 1m³ metal

9/24/2008

Techniques for metal

- Chemical decontamination
 - Concentrated or diluted chemical reagents
 - Effective for complex geometry
 - Requires efficient recycling of the chemical
 - Unless the site has a process for either solidifying liquid waste or processing it, avoid liquid decontamination methods
 - They produce large volumes of secondary wastes
 - Equally so electrochemical methods

Techniques for metal

Abrasive- blasting techniques

- Wet techniques
- Dry techniques
- Provided secondary wastes are controlled can be efficient.
 - Waste disposal fuel transfer cask SURR

Melting

 Cannot envisage a suitable application on a research reactor site.

Techniques for metal

Considerations for pipe-work.

- How do you clean it
- How do you monitor it (particularly if the contamination is alpha)
- How much secondary waste do you generate to clean a pipe/ m length

 Cost Benefit analysis will more often than not suggest minimise volume but dispose of as active waste, (LLW)

Techniques for Concrete

Activated concrete removal

- Pneumatic breaker
- Diamond drill
- Expanding grout
- Subject to depth scabbling/ shaving.

Activated concrete will contain Tritium, general principal avoid wet methods, otherwise spread secondary contamination

Activated Concrete

- Depth will generally preclude scabbling or shaving
- Most efficient hydraulic crusher, if all surfaces accessible, however maximum thickness 0.5m
- Usually driven to pneumatic breaker
 Can achieve up to 5 m³ /hr

Techniques for Concrete

Free release concrete removal

- Pneumatic breaker
- Diamond drill/ burst
- Expanding grout
- Hydraulic crusher
- Diamond Wire

Diamond wire maximum removal rates

Subject to cranage facilities, configuration of bioshield.

Techniques for Concrete

Contaminated concrete

- Scabble
- Shave
- Breakout

All methods worthy of consideration. Consider minimisation of airborne contamination.

Developing a strategy

- Compile in inventory of all material in the reactor Building
 - Define characteristics
 - Material; volume; mass
 - Estimated activity- fingerprint (which radionuclides)
 - Estimated dose rate if any
 - Select an appropriate waste disposal strategy

Video

Scottish Universities Research Reactor Decommissioning Project

