

International Atomic Energy Agency

Requirements for Decommissioning Planning

R²D²P Workshop: Planning PNRI, Manila ,15-19 September 2008

Ernst Warnecke

Korneuburger Strasse 77
2103 Langenzersdorf / Austria
warnecke.ernst@aon.at

Lesson Objectives

- Understand the requirements for the preparation of a decommissioning plan
- Understand the importance of early planning
- Understand the importance of preparing a decommissioning plan now, if it is not available
- Understand the planning for decommissioning and the overall outline of decommissioning plans
- Understand the work breakdown structure (WBS)
- Understand the need of R²D²P participants to take action on deficits in national situations

Hierarchy of IAEA Safety Standards (I)

Fundamentals

- Provide basic objectives, concepts and principles of safety
- "The Principles of Radioactive Waste Management" (111-F) 1995
- "Fundamental Safety Principles" (SF-1) 2006

Requirements

- Establish requirements that must be met to ensure safety
- Use "shall" statements
- Governed by objectives and principles in the Safety Fundamentals
- "Predisposal Management of Radioactive Waste, Including Decommissioning" (WS-R-2) 2000
- "Decommissioning of Facilities Using Radioactive Material" (WS-R-5) 2006

Hierarchy of IAEA Safety Standards (II)

Safety Guides

- Recommend actions, conditions or procedures for meeting requirements
- Use "should" statements
- Implication is that recommended methods or equivalent alternative methods should be used
- "Decommissioning of Nuclear Power Plants and Research Reactors" (WS-G-2.1) 1999
- "Decommissioning of Medical, Industrial and Research Facilities" (WS-G-2.2) 1999
- "Decommissioning of Fuel Cycle Facilities" (WS-G-2.4) 2001
- "Application of the Concepts of Exclusion, Exemption and Clearance" (RS-G-1.7) 2004
- "The Release of Sites from Regulatory Control upon Termination of Practices" (GS-G-5.1) 2006

Hierarchy of IAEA Safety Standards (III)

Safety Reports

- Describe good practices
- Give practical examples and detailed methods that can be used to meet safety requirements
- Do not establish requirements or give guidance
- "Safe Enclosure of Nuclear Facilities during Deferred Dismantling" (Safety Report Series No. 26) 2002
- "Safety Considerations in the Transition from Operation to Decommissioning of Nuclear Facilities" (Safety Report Series No. 36) 2004
- "Derivation of Activity Concentration Values for Exclusion, Exemption and Clearance" (Safety Report Series No. 44) 2005
- "Format and Content for Decommissioning Safety Related Documents" (Safety Report Series No. 45) 2005
- "Decommissioning Strategies for facilities Using Radioactive Material" (Safety Report Series No. 50) 2007

International Conventions

- IAEA Safety Standards are non-binding international recommendations
- IAEA Safety Standards are applicable to operations using IAEA support (Statute, Art. III, 6.)!
- International Conventions are legally binding to "Contracting Parties"
- Conventions are adopted into the legal framework of "Contracting Parties"
- Most relevant for Decommissioning:
 Joint Convention on the Safety of Spent Fuel
 Management and on the Safety of Radioactive
 Waste Management

Joint Convention (I)

- Was developed on the basis of IAEA Safety Standards
- Is consistent with IAEA Safety Standards
- "Translates" IAEA Safety Standards into national law of Contracting Parties
- Includes Decommissioning of nuclear facilities as one major topic
- Sets requirements on "Planning"

Joint Convention (II)

- Requires a decommissioning plan
 - Conceptual plan at design stage
 - Update decommissioning plan during operational lifetime; review by regulatory body
 - Note: The terms "initial planning", "on-going planning" + "final planning" are often used to express the development of a 'final' decommissioning plan
 - Ensure adequate financial resources
 - Keep records of information important to decommissioning
 - Upgrade existing facilities and past practices

Messages to countries participating in R²D²P

- Be "Contracting Party" to the Joint Convention
- Comply with IAEA Safety Standards and the Joint Convention
- Have a decommissioning plan for each nuclear facility or develop it now
- R²D²P would be a failure if decommissioning plans would not be initiated now
- Note: Not having decommissioning plans is not consistent with IAEA Safety Standards + the IAEA Statute. Consistency is required for IAEA support!

General Planning (I)

- Plan for decommissioning as early as possible
- Be consistent with the national legal framework and international recommendations
- Extent, content and degree of detail of planning depend on the type, complexity and hazard associated with a facility
- Take nuclear <u>and</u> conventional hazards into account
- Make a proper cost calculation; periodical review
- Ensure funds will be available when needed

General Planning (II)

- Three stages of planning are normally used:
 - Initial Planning
 - On-going Planning
 - Final Planning
- Again, the degree of detail will vary from facility to facility and will increase from the initial to the final decommissioning plan
- Pertinent facility records are <u>critical</u> in the development of a Decommissioning Plan

Initial Planning

- An initial decommissioning plan shall be prepared and submitted with each construction application for a new facility
- The design and construction of a facility should ease the later decommissioning
- Operating facilities without a decommissioning plan should prepare one without undue delay

Ongoing Planning

- During on-going facility operations, the decommissioning plan shall be routinely reviewed, updated and made more comprehensive with respect to:
 - Technological advances
 - Significant changes of systems and structures
 - Incidents / abnormal operating events
 - Regulations and government policy
 - Cost estimates and financial provisions
- Also to be incorporated: safety considerations,
 e.g. normal operations / incidents + accidents

Final Planning

- Before shutdown of a facility a final + detailed decommissioning plan, including safety assessment, is to be prepared
- This plan has to be submitted to the regulator for review and, if acceptable, approval
- Such an application maybe for a <u>one step project</u> or a <u>stepwise project</u>
- Stepwise projects
 - submit an overall concept with individual steps identified
 - submit plans for individual steps as work progresses
- Decommissioning plans may be amended or refined as work proceeds, subject to approval International Atomic Energy Agency

Decommissioning Planning: Overview

- Scope of the project
- Decommissioning strategy / option
- End state of decommissioning
- Technology and equipment
- Expertise and qualified staff
- Costs and funding
- Materials management (fuel, waste, recycling)
- Work breakdown structure
- Steps in a project execution
- Project controls
- Release of sites from regulatory control
- Communication: local community, decision makers + general public

Scope of the Project

- Clarify the scope as early as possible
- Be clear of what needs to be done
 - Which buildings / facilities are to be decommissioned
 - What is the relevant area (inside / outside the fence)
 - What is the expected end-state for the buildings / facilities
 - What is the expected end-state of the area
 - What are the requirements for the release of facilities and the site
- Plan properly to be (reasonably) sure that the final goal (expected end-state) can be achieved
- Include the licensing needs into all the planning
- Communicate (decision makers + the public)

Decommissioning Strategy / Option

- Three main strategies / options are considered:
 - Immediate decontamination and dismantlement
 - Safe storage for a defined period prior to decontamination and dismantlement
 - Entombment of the facility (near surface repository)
- Many factors have to be considered:
 - Policy + socio-economic factors (politicians, public ...)
 - Technological + operational factors
 - Long-term uncertainties

IAEA: Selection of decommissioning strategies: Issues and factors http://www-pub.iaea.org/MTCD/publications/PDF/TE_1478_web.pdf

NEA: Selecting strategies for the decommissioning of nuclear facilities

http://www.nea.fr/html/rwm/reports/2006/nea6038-decommissioning.pdf

International Atomic Energy Agency

End State of Decommissioning

- Three main end states are often considered:
 - Free release of buildings + sites
 - Reuse of buildings + sites (nuclear or industrial)
 - Restricted release of buildings + sites (institut. control)
- Factors important to end state decisions
 - Proper characterisation of buildings + sites
 - Assessment of the decontamination capabilities
 - Comparison to the release requirements
 - Analyses of the costs / financial benefits (land price)
 - Policy + socio-economic factors: politicians, pressure groups, public ... may heavily oppose restricted release
- Be prepared to deal with scientific and all types of non-scientific matter

Technology and Equipment (I)

- Decommissioning is a breakdown of structures to manageable pieces
- Cutting (shears), sawing (band saw), demolition (wrecking ball) and others may be used
- Trend: Use and, if necessary, adopt standard equipment (from the shelf)
- Look at risks associated with equipment, e.g.:
 - Thermal techniques (risk of fire)
 - Dry techniques (risk of airborne contamination)
 - Liquid techniques (risk of waterborne contamination)
- Plan to prevent negative impacts, e.g. remove combustibles, use housing / tent, contain, liquids

Technology and Equipment (II)

- Necessary technology + equipment
 - Plan well to identify technological and equipment needs
 - Look for similar / comparable project experience
 - Assess costs and licensing in the planning process
 - Look for nationally available equipment
 - Procurement on international market takes time + may be difficult (import rules, foreign currency, spare parts)
 - Plan for IAEA support (e.g. Technical Co-operation)
 - Look for used equipment or share equipment especially in cases of a singular exercises (R²D²P co-operation)

Expertise and Qualified Staff

- Countries with small nuclear programmes may be short in expertise and qualified staff to serve both operations and independent review (regulation)
 - Involve expertise from other countries / IAEA assistance
- Prepare a proper plan for the workforce needs
- Plan the transition of existing staff from operation to decommissioning according to workforce need
- Assess the work to be done by own staff + decide on the involvement of (specialised) contractors
- Provide education and training to the staff
- Set up a project management organisation

Costs and Funding (I)

- Estimate costs at a very early stage
 - This is necessary to set up a funding mechanism
 - Research facilities are often Government owned
 - Governments tend to pay from the annual budget
 - A "decommissioning fund" may not be needed
 - Plan in view of Government budgeting, e.g. 5a / 1a plan
- Estimate costs for decommissioning options
 - Part of the "optioneering" (decision making) process
- Calculate detailed costs during the final planning
 - Total costs and cost breakdown for individual elements
 - Prepare a detailed time table: Time is money!

Costs and Funding (II)

- Manage the programme well to avoid delays: extra cost!
- Build inflation into the cost calculations: e.g. X% p.a.
- Allow a margin for uncertainties
- Include the costs for waste + materials management, e.g. conditioning, storage, disposal of radioactive waste; nuclear fuel; release of materials, buildings, site(s)
- Plan well to ensure funds are available when needed
- Please bear in mind: No funds No safety!

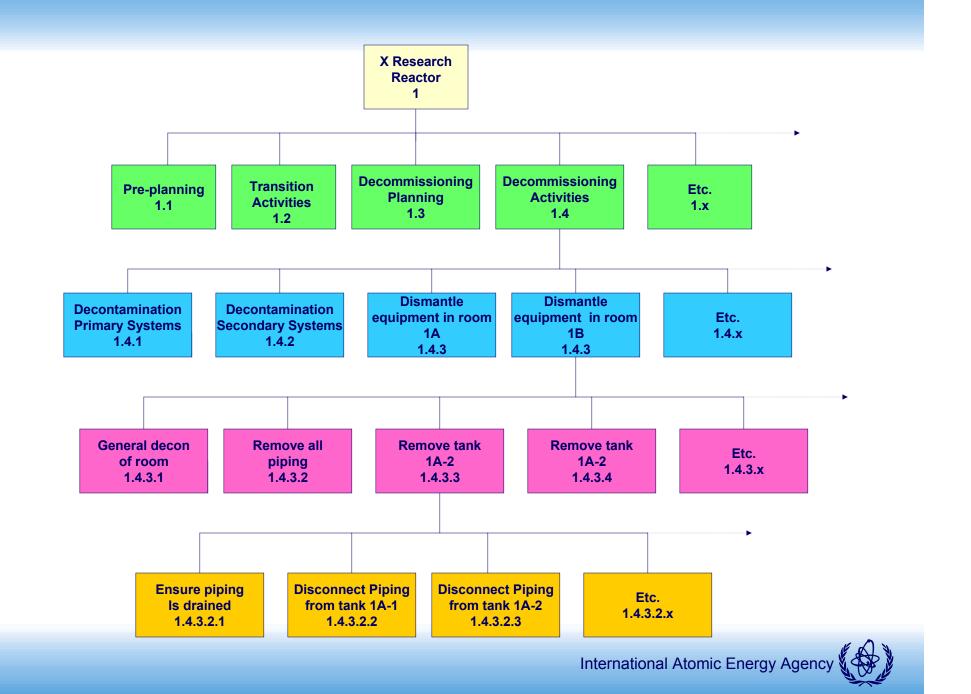
IAEA: Financial Aspects of Decommissioning http://www-pub.iaea.org/MTCD/publications/PDF/te_1476_web.pdf

NEA: Decommissioning Funding: Ethics, Implementation, Uncertainties http://www.nea.fr/html/rwm/reports/2006/nea5996-decommissioning.pdf

NEA: Decommiss. Nuclear Power Plants: Policies, Strategies and Costs http://213.253.134.43/oecd/pdfs/browseit/6603221E.PDF

Materials Management

- What to do with the nuclear fuel
 - Return to the USA, Russia (or another country)
 - If necessary, receive fresh fuel in return
 - Plan early to get a "slot" + prepare for the fuel transfer
- Check the needs for materials management
 - Assess sufficiency of existing decontamination, release measurement, conditioning, storage, disposal facilities
 - If insufficient: plan early for building of new capacities
 - Identify routes for recycle + reuse of materials / equipm.
 - Identify routes for the disposal of non-nuclear waste
- Some of the waste issues may be controversial


Work Breakdown Structure (WBS); (I)

- The WBS is used to categorize work activities and cost elements into a logical structure
- This is the basis for a time table / work schedule
- The work groupings are usually related to the accounting system used for budgeting and tracking major decommissioning cost elements
- It is also of use for project control, e.g. time table
- The WBS elements are generally arranged in a hierarchal format that may reflect a company's organization chart
- The topmost member or level of the WBS would be the overall project. Subsequent levels are used to track increasing levels of project detail

International Atomic Energy Agency

Work Breakdown Structure (WBS); (II)

- The WBS goes down several hierarchical levels, rarely exceeding the sixth level
 - such detail is usually unnecessary for cost + reporting purposes
 - In many cases the costs are "rolled up" to level 3 or level 2 for management information
- Project management or accounting software is available
- Most project management and accounting software packages are capable of relating cost information directly to the WBS format, e.g. for project reporting purposes

Example WBS Based Schedule

WBS#	Task Name	Labor Hours (x 1000)	Budget (includes labor) (x 1000€)	T = - 3 Mon		T = 3 Mon	T = 6 Mon	T= 9 Mon	T = 12 Mon	T = 15 Mon	T = 18 Mon	T = 24 Mon
1	Decommission Research Reactor		2000									
1.1	Pre-shutdown planning		30									
1.2	Final Shutdown		===		Milestone							
1.3	Preliminary Studies		30									
1.4	Project Execution		1905									
1.4.1	Decommissioning Activities		1740									
1.4.1.1	Decon/Remove Auxilary Systems		870									
1.4.1.2	Decon/Remove Reactor Systems		870									
1.4.2	Final Status Surveys		150									
1.4.3	Confirmatory Surveys		15									
1.4.4	License Termination		===									Milestone
1.5	Closeout Actions		35									
1.5.1	Non-radiological remediation		25									
1.5.2	Demobilization		5									
1.5.3	Closeout Documentation		5									

Steps in a Project Execution

- Decommissioning activities
 - Emptying the facility
 - Transfer, storage, ... of nuclear fuel
 - Draining and decontamination of pipes, tanks etc.
 - Decontamination of other systems
 - Removal of equipment, components + structures
 - Materials management: incl. conditioning, storage, transport and disposal of waste; recycle / reuse; decontamination / disposal of non-radioactive waste
 - Surveillance and maintenance (S&M)
- Final surveys and then license termination
- Confirmatory surveys, as necessary

Project Controls

- Quality Assurance
- Control of actual data
- Check actual data against planned (baseline) data
 - Costs
 - Progress of work versus timetable / schedule
 - Exposures
 - Other control parameters
- Take action in the case of deviations from plan
- Programme Evaluation and Review Technique (PERT)

Release of Sites from Regulatory Control

- When radiological and hazardous material have been removed in accordance with "clearance levels", the site license may be terminated by the regulatory body
- Monitoring needs or institutional controls have to be developed + implemented, if necessary
- At the end appropriate project reporting and documentation is to be completed
- A decision on the responsibility + location for storage and maintenance of the documentation has to be made

Communication

- Communication to the local community, decision makers + the general public is important
- Communication is the responsibility of the highest managerial level
- Always be correct + never try to fool or cheat
- Do not make promises that cannot be fulfilled as this will deteriorate trust + good relations
- Listen to or work with "stakeholders" + try to accommodate, if possible, their views in the planning process
- Keep "stakeholders" informed (before the press)
- Decommissioning end state is a sensitive issue

NEA: Stakeholder Involvement in decommissioning of nuclear facilities http://www.nea.fr/html/rwm/reports/2007/nea6320-stakeholdenpidfial Atomic Energy Agency

Summary

- Decommissioning is an orderly, phased final step in the life of a nuclear facility
- Early planning for decommissioning is required
- Planning is an <u>ongoing</u> process
- A <u>final</u> plan should be available at shutdown
- Planning of the entire decommissioning process must be carried out thoroughly + with great care
- Roles + responsibilities must be clearly defined
- Good planning will save money and will ease the carrying out of the decommissioning activities
- Failing to plan is planning to fail!

THANK YOU

