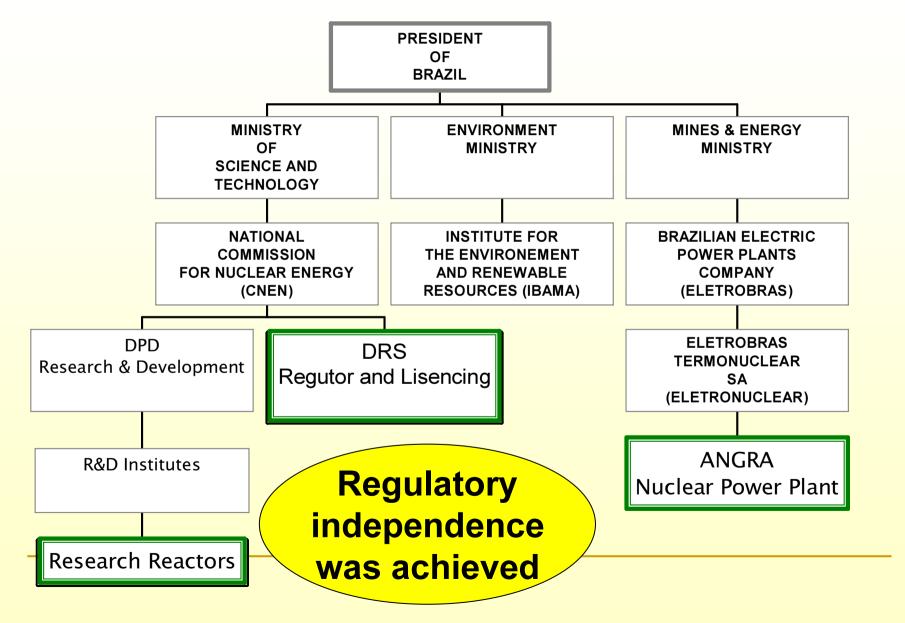
Brazilian Presentation

RESEARCH REACTOR DECOMMISSIONING ACTIVITIES - BRAZIL

Pablo Andrade Grossi Clédola Cassia O. de Tello

Contents

- Introduction
- Brazilian legal and regulatory framework
- IPR-R1 Research Reactor decommissioning plan and decommissioning strategy
- End state of IPR-R1 decommissioning activities
- Cost estimate and funding
- Management of materials / waste and release from nuclear regulatory control
- Decommissioning expertise and tools



INTRODUCTION

 Four research reactors are operated by the federal research institutes.

FACILITY	POWER (kW)	TYPE	STATUS
ARGONAUTA	0.20	ARGONAUTA	Oper.
IEA-R1	5,000.00	POOL	Oper.
IPEN-MB 01	0.10	ZPR TANK	Oper.
IPR-R1	250	TRIGA-Mark I	Oper.

Brazilian Nuclear Structure

For research reactors there is no specific decommissioning policy.

The *operator has no fixed rules* to perform the decommissioning work.

The **report for each phase** must be sent to the regulatory body to **be approved**.

Some licensing norms present decommissioning *guidelines* for the report preparation, but there aren't any established requirements *for each step*. These guidelines are only a suggestion.

NATIONAL REPORT

OF

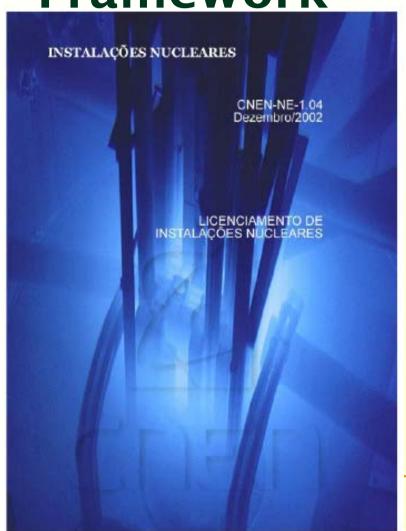
BRAZIL

FOR THE

JOINT CONVENTION ON THE SAFETY OF SPENT FUEL MANAGEMENT AND ON THE SAFETY OF RADIOACTIVE WASTE MANAGEMENT

May 2006

National Report of Brazil


for the

Joint Convention on the safety of spent fuel management and on the safety of radioactive waste management

Describes the decommissioning of one nuclear facility in Brazil:

USAM - Monazite Sand Treatment Facility

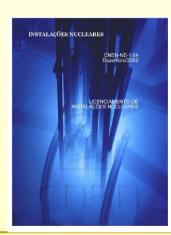
Nuclear Facilities Licensing (CNEN-NE-1.04)

Legal and Regulatory

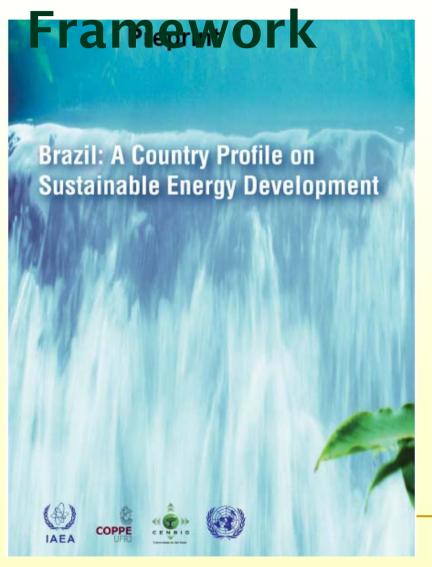
Framework

Safety Assessment Report Guidelines

(CNEN-NE-1.08, CNEN-NE-1.09, CNEN-NE-1.11)



- 3.01 (Basic Instructions for Radiation Protection)
- 6.02 (Licensing of Radioactive Installations)
- 6.05 (Management of Radioactive Wastes)



Legal and Regulatory

Brazil: A Country
 Profile on Sustaintable
 Energy Development

Discussion about Nuclear Power Plants Decommissionig

In Brazil when the national regulations don't cover a specific nuclear and radioactive issues the consensus is to:

Use the IAEA recommendations.

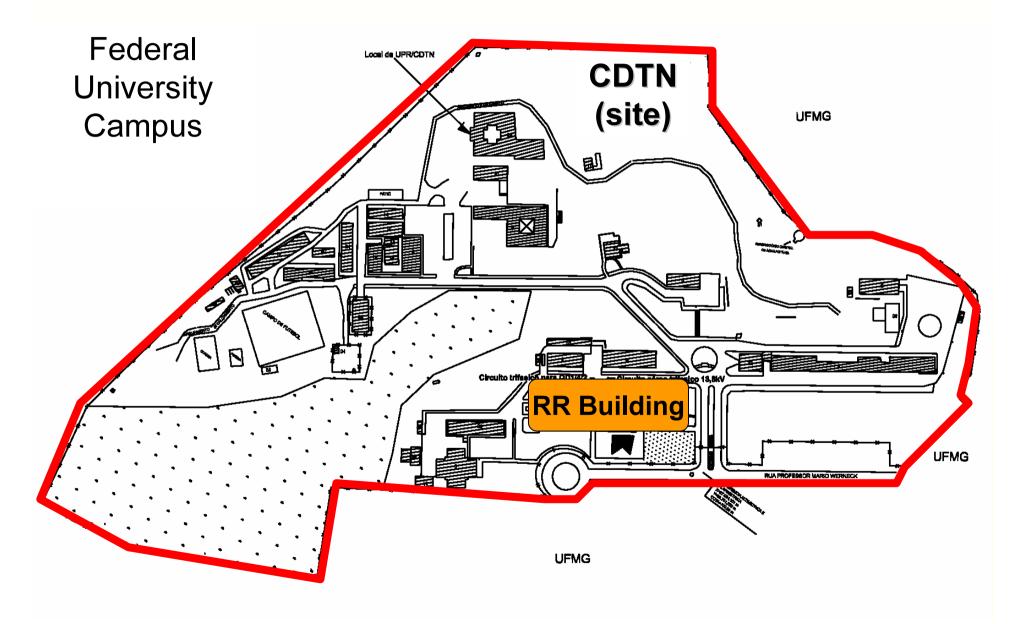
Brazil do not have a decommissioning policy.

Then IPR-R1 did not have a decommissioning plan as part of its original licensing documentation.

- Introduction;
 done
- **Facility description**: Physical description of the site and facility; operational history; systems and equipment; radioactive and toxic material inventory; **done**
- Decommissioning strategy: partly done
- Project management: resources; organization and responsibilities; review and monitoring arrangements; training and qualifications; reporting and records;

to be done

- Decommissioning activities: description and schedule of phases and tasks; decontamination activities; dismantling; waste management; surveillance and maintenance programs; to be done
- Safety assessment: dose predictions for tasks; demonstration of ALARA for tasks; radiation monitoring and protection system; physical security and materials control; management of safety; risk analysis; operating rules and instructions; justification of safety for workers, general population, and environment; to be done (established norm and procedures by CNEN 3.01 and CDTN, internal competency identified)


- Environmental impact assessment:
 to be done (CDTN has environmental protection staff)
- Quality assurance program:
 partly done (application of the existing procedures)
- Radiation protection and safety program:
 partly done (CDTN has radiological and environmental protection staff)
- Radiological criteria clearance: partly done (exemption levels established and CDTN has radiological and environmental protection staff).

DECOMMISSIONING STRATEGY

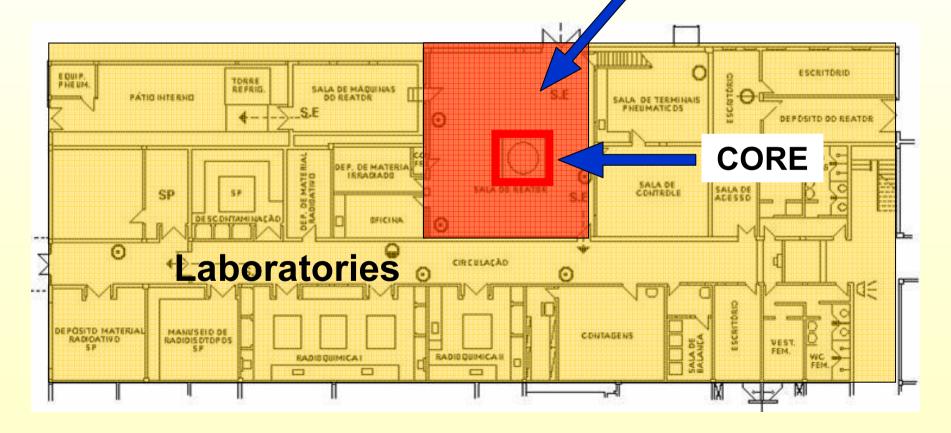
- There are two possible strategies, since the reactor lifetime is about at least 10 years.
 - □ Immediate total dismantling (green field)
 - □ Safe enclosure (restricted uses, brown field)
- Just before the shutdown the strategy will be selected considering the legislation, political and economical situation.

Reactor Location


Reactor Location

Reactor Building

Reactor Facility



- Restricted Area
- Unrestricted Area

Reactor Room

End state of decommissioning activities

- The final goal of the first strategy is the unrestricted use of the local.
- In the second strategy initially the local will be classified for restricted use (brown field)

(as a historical piece of a TRIGA technology)

After some decades the final goal will be the unrestricted use of the place, after the full decontamination.

Cost and Funding

- The IPR-R1 Reactor belongs to CDTN, one research institute of CNEN, then the decommissioning costs will be provided by CNEN.
- CNEN is a public institution of the Science and Technology Ministry, so:
- Decommissioning Costs should be estimated in advance and the budget would be defined in accordance of the previewed institutional project.

Management of materials/waste

- The dismantling will occur only in the facility rooms (when necessary) because the RR building is integrate with laboratories, offices, a library and a cafeteria.
- The radioactive wastes will be classified and collected following the regulatory body norm:

CNEN 6.05 – Radioactive Waste Management.

Management of materials/waste

- Bailing, crushing, cementation, chemical precipitation and immobilization are the treatment options available in CDTN.
- Low and intermediate waste will be stored in the *Intermediate Storage Facility in CDTN*.
- Other materials will be classified as recyclable, regular or hazardous material and treated according to the environmental standards (10.000 ABNT Norm Series).

Release from nuclear regulatory control

- The radiological protection staff will define the release criteria for material and facility rooms following the regulatory body norms:
 - 3.01 (Basic Instructions for Radiation Protection)
 - 6.02 (Licensing of Radioactive Installations)
 - 6.05 (Management of Radioactive Wastes), and internal procedures.

Decommissioning expertise and tools

- There was already a decommissioning experience in Brazil, done in USAM Monazite Sand Treatment Facility.
- This facility has produced rare earth since 1950's. The area is now free of regulatory control for unrestricted use.
- CDTN has expertise to perform the majority of decommissioning works, and for other ones there are enough enterprises in Brazil to carry out them.

CONCLUSION

- Now is time for IPR-R1 decommissioning planning.
- The main task will be the management of internal groups (matrix structure) to develop the decommissioning planning and in the future perform the decommissioning activities in a joint work.

CONCLUSION

There was a International Congress in Santos, Brazil, in October and we presented the paper "IPR-R1 TRIGA Research Reactor Decommissioning: Preliminary Plan". The objective is to join dispersed expertise in Brazil and know about isolated experiences in decommissioning.

THANKS

Ministério da Ciência e Tecnologia

