OPAL Decommissioning
Design Considerations

Sungjoong (Shane) Kim
16 November 2007
skx@ansto.gov.au
Contents

• General Overview of OPAL Structure
• OPAL Decommissioning at Design Stage
• Material Selections
• Design Considerations for Dismantling
12/12/07 ACAM-2007: CNS at OPAL, S. Kim

HIFAR 10MW Shutdown Jan 2007

Moata 100 kW Shutdown May 1995

Buffer Zone, 1.6 km radius from HIFAR

OPAL, 20MW, Opened 20/4/07
Reactor Tank, H$_2$O, Stainless Steel

Reflector Tank, D$_2$O, Zicalloy

Leak Detection Channel

CNS

Fuel

Beam Tube
Built for Decommissioning

- 'Chapter 19' - Decommissioning
 - Part of OPAL Tender Specification
 - Based on lessons learnt from Moata/HIFAR and other overseas decommissioning examples
 - IAEA recommendations
- Dedicated System Level Coordinator
 - Independent to other OPAL System review team
- World’s first?
 - Plan Funeral before Birth: Complete Life-cycle.
<table>
<thead>
<tr>
<th>Nuclide</th>
<th>Half-life</th>
<th>Decay Mode/Major radiation</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>24Na</td>
<td>15 h</td>
<td>β/γ</td>
<td>Aluminium</td>
</tr>
<tr>
<td>27Mg</td>
<td>9.5 m</td>
<td>β/γ</td>
<td>Aluminium</td>
</tr>
<tr>
<td>28Al</td>
<td>2.2 m</td>
<td>β/γ</td>
<td>Aluminium</td>
</tr>
<tr>
<td>40Ca</td>
<td>163 d</td>
<td>β/β</td>
<td>Concrete</td>
</tr>
<tr>
<td>51Cr</td>
<td>27.7 d</td>
<td>γ</td>
<td>SS 304, Aluminium</td>
</tr>
<tr>
<td>54Mn</td>
<td>312 d</td>
<td>γ</td>
<td>SS 304</td>
</tr>
<tr>
<td>59Fe</td>
<td>2.7 y</td>
<td>γ</td>
<td>SS 304, Concrete</td>
</tr>
<tr>
<td>58Mn</td>
<td>2.8 h</td>
<td>β/γ</td>
<td>SS 304, Aluminium</td>
</tr>
<tr>
<td>59Fe</td>
<td>44.5 d</td>
<td>β/γ</td>
<td>SS 304, Concrete</td>
</tr>
<tr>
<td>98Ni</td>
<td>76 y</td>
<td>γ</td>
<td>SS 304</td>
</tr>
<tr>
<td>60Co</td>
<td>5.3 y</td>
<td>$\beta/\beta/\gamma$</td>
<td>SS 304, Zircaloy 4, Concrete, Steel</td>
</tr>
<tr>
<td>60Ni</td>
<td>100 y</td>
<td>β/β</td>
<td>SS 304, Zircaloy 4</td>
</tr>
<tr>
<td>65Zn</td>
<td>244 d</td>
<td>γ</td>
<td>Aluminium</td>
</tr>
<tr>
<td>93Nb</td>
<td>13.1 y</td>
<td>γ</td>
<td>Zircaloy 4</td>
</tr>
<tr>
<td>92Zr</td>
<td>1.5 10^9 y</td>
<td>β/β</td>
<td>Zircaloy 4</td>
</tr>
<tr>
<td>95Nb</td>
<td>35 d</td>
<td>β/γ</td>
<td>Zircaloy 4</td>
</tr>
<tr>
<td>95Zr</td>
<td>64 d</td>
<td>β/γ</td>
<td>Zircaloy 4</td>
</tr>
<tr>
<td>97Nb</td>
<td>72 min</td>
<td>β/γ</td>
<td>Zircaloy 4</td>
</tr>
<tr>
<td>97Zr</td>
<td>16.8 h</td>
<td>β/γ</td>
<td>Zircaloy 4</td>
</tr>
<tr>
<td>103mAg</td>
<td>418 y</td>
<td>γ</td>
<td>Ag-In-Cd alloy</td>
</tr>
<tr>
<td>109Cd</td>
<td>463 d</td>
<td>γ</td>
<td>Ag-In-Cd alloy</td>
</tr>
<tr>
<td>110mAg</td>
<td>250 d</td>
<td>γ</td>
<td>Ag-In-Cd alloy</td>
</tr>
<tr>
<td>122mTe</td>
<td>57.4 d</td>
<td>β/γ</td>
<td>Zircaloy 4</td>
</tr>
<tr>
<td>124Sb</td>
<td>2.77 a</td>
<td>β/γ</td>
<td>Zircaloy 4</td>
</tr>
<tr>
<td>132Eu</td>
<td>13.3 y</td>
<td>γ</td>
<td>SS 304, Concrete, Steel</td>
</tr>
<tr>
<td>154Eu</td>
<td>8.8 y</td>
<td>γ</td>
<td>SS 304, Concrete, Steel</td>
</tr>
<tr>
<td>208Pb</td>
<td>1.5 10^7 y</td>
<td>γ</td>
<td>Lead</td>
</tr>
</tbody>
</table>

C= Electron Capture
$\beta+$= Positron
β= Beta Particle
γ = Gamma-ray

Table 19.4/1
Radionuclides Included for Activity Estimation
After 40 years of normal operation at full power
Figure 19.4/1 Activity of the Dominant Radioactive Inventory

![Graph showing the activity of different radioactive isotopes over decay time. The x-axis represents decay time in years, ranging from 0 to 30. The y-axis represents activity in TBq, ranging from 1.0E-01 to 1.0E+05. The graph includes lines for Sb-125, Ni-63, Co-60, Ni-59, Eu-152, Eu-154, Nb-93m, and Fe-55.]
Example: Decay of Main Nuclides of Moata

Active Waste: 50% of Reactor Volume
25% Active Waste
1% Active Waste
Example: Dose Rate from Moata
Waste Classification

• Exempt Waste (Free Release)
 - Annual dose to public less than 0.01 mSv

• LLW and ILW:
 - higher than 0.01 mSv/yr
 - less than 2 kW/m³ thermal
 - Short lived: < 400 Bq/g total package
 - Long lived: > 400 Bq/g

• HLW: Not from OPAL
Material Selection

- Long-lived nuclides are minimised near the core
- Designed for 40 years
 - CNS: 10 years - Flange connection.
- Short decay period
Design Features - Easy Dismantling

• Modular sections
 ➢ No unnecessary cutting
 ➢ Can be unbolted using remote handling tool

• Space for dismantling
 ➢ Accessibility of remote handling tools
 ➢ Manoeuvrability of objects

• Underwater Storage & Cutting Facility

• Pipe design
 ➢ Easy to drain active fluids

• Decontamination
 ➢ No hard-to-access cavities
During Operations

- **Operations History**
 - Record - normal and abnormal conditions
 - Radioactive inventory list update

- **Decommissioning Plan**
 - Living Document
 - Update or revise as appropriate
 - Conform to New regulations (IAEA, ARPANSA, etc)
 - New technology in 50+ years time
What is R2-D2?

- **R2-D2 Specification**
 - It came from the peaceful world of Naboo.
 - R2-D2 served the elected monarch aboard the Royal Starship.
 - 0.96 m tall

- **Skills**
 - Arc Welding
 - Buzz Saw
 - Remote Handling
 - Decommissioning Contractor??

Australian Government
The End

Thank you for your attention.
Long Live the OPAL Reactor....
and Happy R.I.P. afterwards

For more information or feedback:
 • www.ansto.gov.au
 • skx@ansto.gov.au