

Australian Government

Australian Nuclear Science and Technology Organisation

HIFAR QMS, Characterisation & Transition Scheduling

Presenter: Algis Lencus

Outline

- Scheduling for Transition
- Radiological Characterisation
- HIFAR Quality
 Management System

Scheduling for Transition

- Phase A Closure
 - Part 1 Shutdown Activities
 - Part 2 Preliminary Dismantling
 - Part 3 Refurbishment
- Phase B Care and Maintenance
- Phase C Decommissioning
- Phase D Green Field

Where are we at?

- November 2007 Shutdown activities nearing successful completion
- Planning for dismantling and refurbishment underway – focus on QMS revision, safety analysis, characterisation, dismantling, design of refurbished systems and waste handling

Australian Government

HIFAR transition to Green Field

Dismantling and Refurbishment

- 24 Major Dismantling Projects
- 10 Major Refurbishment Projects

Typical Dismantling/Refurbishment Project

- Projects follows existing Project Management protocol involving hold points to allow independent safety and regulatory assessment
- Project engineer defines resource and expenditure requirements
- Cost, durations & deadlines stipulated
- Project plan is incorporated into master schedule – any inter-dependencies are resolved

Typical Dismantling/Refurbishment Project

- Quality plan
- Task specification
- Project plan & schedule
- Conceptual design, cost estimate & review
- Detailed design and drawings
- Safety analysis and submission
- Engage contractors
- Purchasing and installation
- Testing & Commissioning
- Waste Management Report
- Update manuals, drawings, procedures, training
- Completion submission and checklist

Dependencies

- Majority of dismantling projects are somewhat independent from other projects outside of accessibility issues
- Otherwise:
 - Availability of waste route (major waste processing facility unavailable until 2009)
 - Refurbished electrical systems reliant on new power supply

Major Milestones for Phase A

- Completion of Phase A, Part 1 (May 2008)
- Clear out Cooling Tower site (November 2008)
- New electrical power supply system (April 2009)
- New HVAC system (August 2009)
- Completion of Phase A (January 2010)

Major Milestones for Phase A

 Electrical refurbishment projects (new power supply and HVAC) are on critical path for the majority of Phase A

Why Perform Characterisation Work?

- Determine the amount of radioactive waste to be generated
- Do you have a place to put it?
- Can you handle it? What doses are expected?
- Help assess risk, assess costs
- Determine site remediation work

Project-based Characterisation

- Project-based characterisation for preliminary dismantling
- Based on known history, potential transport of radioactive material, neutron activation fields and maintenance of systems, waste routes are available for the majority of systems planned for dismantling
- Large contaminated items will have to wait until 2009 when a new waste facility is commissioned

Dismantling

- Tritium contamination is a low energy beta emitter and is easily shielded
- Simple dosimeter measurements may not suffice

Cooling Towers Site Remediation

- Biased sampling of pond concrete, surroundings and pipework based on known events and operation
- Check for migration of hazmat to underlying strata
- Conformance to state-based environmental legislation

Cooling Towers Site Remediation

- Groundwater and air sampling carried out on a regular basis
- Groundwater at site is ~35 Bq/L (Nov 05) (Aus Drinking Water Guideline is 7600 Bq/L)
- Review of monitoring history

Radiological Characterisation Plan for HIFAR

- Cumulative flux at site of activation (by insitu measurements and analytical methods)
- Calculate and then verify calculations with radiological surveys and information from similar reactors

Radiological Characterisation Plan for HIFAR

- Review of historical information to determine megawatt days, abnormal occurrences
- Estimates made by scaling results obtained from Danish DIDO class reactor DR-3 characterisation
- Sampling plan to be prepared after a review of sampling plans conducted for other DIDO class reactors
- Majority of activity due to ⁶⁰Co
- Follow principles from MARSSIM
- Develop site remediation plan

Scaling of DR-3 Analysis

Scaling of DR-3 Analysis

間

Radiological Analysis

- Monte-Carlo analysis of 3D model of HIFAR to determine flux
- Subsequent analysis to determine activation and decay

Long-term characterisation – Waste Estimates

- Final decommissioning dependent on National Waste Repository
- 2005 waste estimates for decommissioning of HIFAR:

Type of waste	Amount of material (t)	
	Transition Work	Decommissioning
Inactive	196	5,300
LLW	130	460
Long-lived ILW	1.9	499

Are all the Nasties Covered?

 Don't forget non-radiological characterisation for decommissioning and remediation: hazardous materials such as asbestos, PCBs, lead, heavy metals, other chemicals etc..

HIFAR Quality Management System (QMS)

- Safety Procedures
- Operating Instructions
- Definition of staff hierarchy and authorities
- Maintenance Instructions
- Project Management Protocol

Why use a QMS?

- Ordered system by which staff can work by
- If something goes wrong, recording systems may track down cause of the problem
- Consistency
- Serves as a knowledge bank
- Enforces a culture of safety and responsibility

Revision of QMS for Transition

- Revised QMS developed after study and consensus is reached with relevant parties
- New staff structure is defined
- Authorities are defined internal and external to the immediate group including maintenance, safety, waste handling
- New limits and conditions are defined (rad & tritium monitors, health physics surveillance, rad stack discharge, building DAC, admin of hazmat)

Revision of QMS for Transition

- Revised QMS is simpler to reflect the simpler nature of the plant → about 180 out of over 800 procedures kept
- QMS revision can be a large undertaking and requires some level of rationalisation

QMS for Transition

Good QMS = Good Management

Summary

- 3 years in transitionary work after shutdown
- Characterisation work: project-based for transitionary work and major plan to determine final decommissioning and remediation
- QMS revision: an important management task

