

Australian Nuclear Science & Technology Organisation

Cost Estimation, Funding for both HIFAR – MOATA Research Reactors

> **Presented by John Rowling Manager / Facilities Management**

INTRODUCTION

- Strategy & Approach
- Cost calculations
- Funding arrangement
 Focusing of "TRANSITION"

There were 5 other reactors of similar design, UK (3), Denmark and Germany

Strategy and Approach How to make up the costings? Labour team for the total project (Time & Cost) **Particular Projects** Map the Stages List the Activities **Special Equipment requirements** Contingency **Neglect the cost savings (May not happen)** When? Where is the origin of the funding? Why – Justification? What is the process?

Closure and Decommissioning Plan

Australian Government

					20	Ø 5	20	006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
	ID	0	Task Name	Start	Finish	H	2H	1 H2	H1 H2	H1 H2	H1 H2	H1 H2	H1 H2	H1 H2	H1 H2	H1 H2	H1 H2	H1 H2	H1 H2	H1 H2	H1 H2	H1
	1						Г]
	2		OP595 Last program	Mon 15/01	Mon 19/02				\sim													
	3		Operating Program	Mon 15/01	Mon 19/02				1													
· · · · · · · · · · · · · · · · · · ·	4		Shutdown	Mon 15/01	Fri 19/01				l I													
	5																					
	6		Phase A Part 1 (MSD)	Wed 1/02	Mon 30/04				\sim													
/	7		Phase A Planning	Wed 1/02	Sat 28/04																	
	8		Approvals	Fri 6/10/	Fri 22/12				1													
	9		HIFAR Pre-closure	Tue 2/01	Mon 30/04																	
	10																					
	11		Phase A Part 2 (Trans	Thu 16/03	Fri 29/06/		\sim		\sim													
	12		Project work	Thu 16/03	Fri 29/06																	
	13		Minor dismantling a	Mon 2/04	Thu 28/06																	
	14																					
	15		Phase B Part 1 (C & N	Mon 2/07	Fri 19/12/																	
	16		Project work	Mon 2/07	Mon 8/10				- È													
	17		Project Implementa	Tue 9/10	Fri 28/03				l	Ъ												
	18	1	Minor dismanlting a	Mon 2/07	Fri 19/12				Ľ		1											
	19		Maintenance Routir	Mon 7/04	Fri 19/12						հ											
	20																					
	21		Phase B Part 2 (CM &	Mon 5/01	Fri 27/06/											\sim						
	22		5 to 10 years of CM	Mon 5/01	Fri 27/06																	
	23																					
	24		Phase C	Fri 28/02/	Fri 16/12/																	
	25		Dismanlting concep	Wed 2/07	Fri 23/01																	
	26		Characterisation of	Wed 19/03	Thu 26/03																	
	27		SAR Review	Fri 28/02	Thu 29/05																	
	28		Preparation for Pha	Fri 28/02	Tue 16/06																	
	29		Implementation	Fri 28/08	Fri 16/12																	

HIFAR Decommissioning Team

Project Manager

- Planner
- 2 Engineers
- 2 Contractor Engineers
- 2 Operators (1 Trainer)
- Active Handling Supervisor
- 4 Active Handlers (Labouring)
- 1 QA & Document person
- 2 Health Physics Surveyors
- 2 Maintenance Staff (Mechanical & Electrical p/t)

Team of 20 staff

Major Decommissioning Projects

- Electrical Distribution Board
- Active Ventilation & HVAC Systems
- Security & Access System
- Communication System
- Lighting System
- Fire Alarm System
- Radiation Instrumentation
- Monitoring System

HIFAR Shell (Non nuclear)

•Strip out all electrical & Instrumentati on wiring • Strip out all light water pipework Install AC Remove SCS & ductwork Removal all

 Removal a non-active material

FIGURE 1.1-2 REACTOR STRUCTURE

HIFAR Shell (Nuclear)

REACTOR STRUCTURE

FIGURE 1.1-2

• Strip out all Helium circuit pipework (02 cct)

- Strip out all small heavy water
 pipework (01 cct)
- Removal all pumps
- Maintain Active extract system
- Maintain Crane
- Cover top plate and storage block

Transitioning

- Closure Team (20 people)
- Budget of \$10 Mio AUD (est)
- Term (2 years) 2007 & 8

Decommissioning 2014+

- Budget of \$40 Mio AUD (est)
- Decommissioning Team (20 people)

Data To Other Similar Reactors

UKAEA £23 million (act) (AUD \$57Mio)

Denmark DnK300million (est) (AUD \$50Mio)

Dismantling Plan & Estimates

Phase 1: Preparation	Phase 2: Dismantling (Ref 4.1.2)	Phase 3: Post Dismantling
Duration: 9 months (50% effort)	Duration: 3 months (100% effort)	Duration: 6 months (50% effort)
Cost: \$900K + 10% contingency	Cost: \$2,000K + 10% contingency	Cost: \$900K+10% contingency
Procedures:	Procedures:	Procedures:
 Prepare project plans & 	•Survey radiation (core sampling)	•Carry out final surveys
procedures	•Establish boundary of active	•Validate 'greenfield' status
•Procure resources, contractors,	zones	•Make good the site
etc.	•Set up temporary containment	•Hand over active waste for storage
•Survey radiation (non-destructive)	•Set up active ventilation & control	•Submit for de-licensing
•Update characterisation	•Remove detachable components	•Hand over the site: unrestricted
•Update radioactive inventory lists	•Remove metal core components	use
•Prepare Env. Impact Studies (EIS)	•Remove fuel storage pits	•Complete documentation
•Obtain approval (the EPBC Act)	•Drill 80 holes into non-active zone	•Review and close the project
•Revise project cost estimate	•Fill holes with 'expanding grout'	
•Prepare submissions (SAC, etc.)	•Control dust with recycled water	
•Obtain ARPANSA approval	•Jack-hammer non-active zones	
	•Contain & demolish active zone	
	•Segregate waste into LLW & ILW	
	•Truck Free-Release waste to the	
	tin	
	•Contain and seal LLW and ILW	
	- Contain and Sour EE W and IE W	

ARGONAUT Reactors

Reactor	Power	Dismantled	Contractor	Cost (Approx.)			
Virginia P, USA	100 kW	1988		US\$0.6M			
UCLA R1, USA	100 kW	1992	NES Inc.*	US\$1.7M			
THAR, Taiwan	10 kW	1993		US\$0.5M			
The Universities Research Reactor, Risley, UK	300 kW	1996	BNFL	£4M comprising; •£2M (dismantling) •£1M (waste) •£1M (fuel removal)			
JASON Reactor [*] , Greenwich, UK	10 kW	6/1999 Visited by S. Kim, ANSTO [Ref 4.1.3]	AEA Tech.*	£7M comprising; •£2M (management) •£2M (dismantling) •£1M (waste) •£2M (fuel removal)			
University of Washington [*] , USA	100 kW	Delayed	NES Inc.*	US\$1.7M ('94 value) plus US\$0.5M for decontaminating spills			
Iowa State University [*] , USA	10 kW	8/2000 Observed & assisted by S. Kim, [Ref 4.1.2]	Duke Eng. & Services*	US\$1M comprising; •US\$0.2M – Planning •US\$0.6M – Dismantling •US\$0.2M – Final survey			
Moata	100 kW	Proposed 2008/9		Estimated (See ER111484) (a)ANSTO: \$3.8M ⁺ (b)DES: US\$2M+** (c)NES: US\$3M+** (d)AEA Tech.: £5M			

Project Planning (1 of 2)

- Breakdown the work into stages or phases
- Breakdown the stages into activities
- **1.1 Pre-decommissioning Stage**
- **1.2 Decommissioning Planning**
- **1.3 Authorisation**
 - Licensing
 - SAR
- 2.1 Shutdown Stage
 - Plant Shutdown
 - Fuel Removal
 - Heavy Water Drainage

Project Planning (2 of 2)

3.1 Project Stage

Building

- 4.1 Dismantling Stage
- **4.2 Decontamination of Equipment**
- 5.1 Safe Enclosure Stage
 - Demolition of Associated Buildings
 - Removal of unnecessary Structures
- 6.1 Decommissioning Stage
- 6.2 Dismantling of operating Equipment
 - Primary & secondary circuits
- Redundant Pumps and Pipework
 6.3 Dismantling of Reactor Block &

WASTE VOLUMES

Descriptio n of Item / Building / Facility / Equipmen t / Plant	Estimated Value of D & R Incl. Transport of Waste (Items 1 to 8)	Estim ated weigh t	Estim ated Volu me	Cost/ m3	Estimate d Cost of Disposal charges only	Expected Date of D & R	Notes
	\$	tonne	m³		\$		
<u>Nuclear</u>							
- HIFAR and ancillary Buildings	\$ 50,180,000	1000	500	\$ 4,000	\$ 2,000,000	2007 to 2020	Three stage decommissioning process to a greenfield site.
- Moata	\$ 5,805,093	60	120	\$ 4,000	\$ 480,000	2012	Decommissioning costs based on US experience for similar reactor.

Questions?

