

NUCLEAR POWER REACTORS						
UNIT	TYPE PWHR	GRID CONNECTION	STATUS	OPERATOR		
Atucha I	PHWR 340 Mwe	1974	Operation	Nucleoelectrica Argentina		
Embalse	PHWR 600 Mwe	1984	Operation	Nucleoelectrica Argentina		
AtuchaII	PHWR 692		Construction	Nucleoelectrica Argentina		

RES	EARCH REACTO	ORS AND CRI	RS AND CRITICAL ASSEM		
UNIT	ТҮРЕ	FUNTIONING	LIFE CYCLE PHASE	OPERATOR	
RA-0	235U 20% 1Wt	1970-	OPERATION	CORDOBA UNIVERSITY	
RA-1	235 U20% 40kwt	1958-	OPERATION	CNEA	
RA-2	235 U 90% 1Wt	1966-1983	DISASSEMBLED		
RA-3	235 U20% 5Mwt	1967-	OPERATION	CNEA	
RA-4	235 U 20% 1Wt	1971-	OPERATION	ROSARI UNIVERSIT	
RA-6	235 U90%0.5 Wt	1982-	OPERATION	CNEA	
RA-8	235 U3.4% 10 Wt	1997-	OPERATION	CNEA 5	

REGULATORY APPROACH ON DECOMMISSIONING OF NUCLEAR INSTALLATIONS

APPLICABLE REGULATIONS TO THE DECOMMISSIONING STAGE:

- Licencing of Relevant Nuclear Installations
- Basic Standard for Radiological Safety
- Decommissioning of Nuclear Power Plants
- Radioactive Waste Management

10

NATIONAL ASPECTS OF THE D&D ACTIVITIES

According to chapter I, Art. 2.e of the National Law N° 24804 ruling nuclear activities CNEA " Is responsible for determining the procedure for decommissioning Nuclear Power Plants and any other relevant radioactive facilities."

The implementation the Nuclear Law, states that CNEA is responsible for decommissioning of all relevant radioactive facilities in the country, at end of life.

Consequently in May 2000 CNEA created a D&D branch within its Unit of Technology.

11

Real Situation:

There is not a Decommissioning plant for any facility

There are not a final repository for LLW and ILW.

The capacity of the Atucha pools are not enough for all the spent fuel till the end of its life.

Many structural components from the NPP's were or must be removed because design problems or ageing.

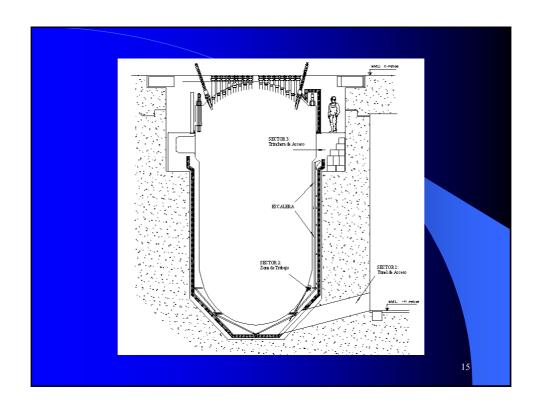
According with this scenario: the main activities are focused in:

Preliminary planning and radiological characterization for research reactors.

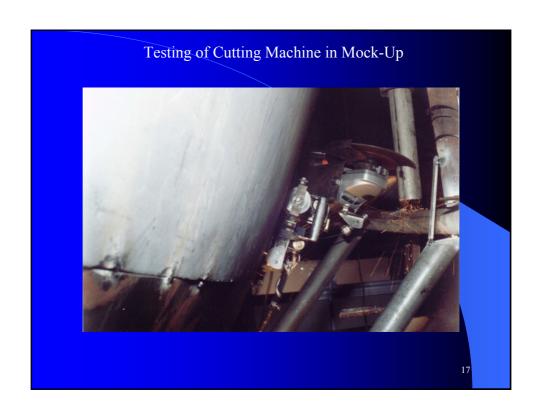
Characterize structural components ,valves, flanges, etc. Evaluate the decontamination and the treatment of the liquids generated.

12

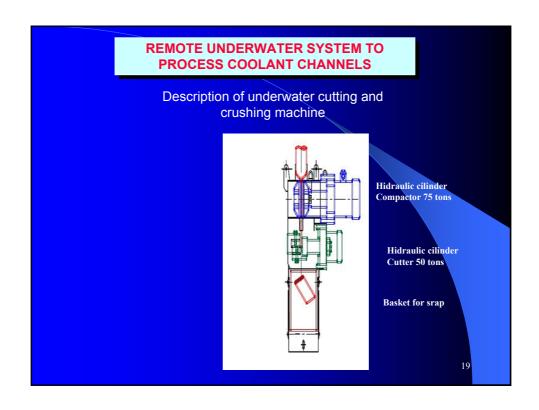
To accomplish this objective, this branch


- Coordinates the training of personnel and organizes the experience and technical knowledge already existing in CNEA and members of the argentinian nuclear sector.
- b) Coordinates a R&D program on D&D technologies.
- c) Establishes close links with the operators of nuclear facilities, whose participation both in planning and in actual D&D work is considered extremely important.

13


Works in progress:

- Characterization, decontamination and disposal of CNA 1 components and equipments like parts of heat exchanger tubes, valves, tanks, component's pumps, filters. It means some tons.
- Processing of coolant channels. There are more than sixty channels which must be processed.
- Preliminary planning and radiological characterization of the research reactors.
- Two examples are given:
- Disassembly of one ladder with high dosis.
- Treatment of coolant channels.


14

