Radiological Monitoring during Decommissioning

Douglas G. Draper

Objectives

• Discuss goals of a monitoring at a facility in decommissioning
• Describe the process of conducting a Historic Site Assessment
• Describe the process of characterizing a facility/site
• Describe the process of decommissioning radiological support monitoring
• Describe the environmental monitoring process
• Review possible post-decommissioning surveillance activities

Goals of a monitoring program

• Decommissioning Scope
 - What has to be done?
• Safety
 - What are the hazards to be encountered?
• In-Process
 - Is the decommissioning process effective?
• Disposition of Material
 - Is it radioactive waste, or can it be released? (See also 26.14)
• Final Status
 - Does the facility meet release criteria? (See also 26.14)

Monitoring Phases

• As the decommissioning project progresses the role of the monitoring staff will shift:
 - Initially - their work focuses on Site and Facility Characterization
 - Then as field activities start their focus shifts onto ensuring safe work practices and work progress
 - Finally – their focus shifts to documenting that the project is ready for Clearance of the Site for Release

Historical Site Assessment

• Design drawings and as built drawings
• Construction materials
• Facility modifications
• Facility operating records
• Production schedules
• Routine surveys
• Interviews with operators and support personnel
• Interviews with retirees
• Event log - accidents and unplanned events
• Review of security files for classified projects
• Photographs
• QA document review
 - Confirm unexpected revelations with Scoping Survey
Characterization

- Based on Historical Site Assessment
- Confirms HSA conclusions
- Develops scaling factors by area
- Can be used to release potentially non-impacted areas
 - Consideration of instruments and techniques
 - Use of GPS greatly simplifies sampling
- Serves as a guide for the Final or Release Survey
- Characterization used as basis for Job Safety Analysis for each decommissioning task
- Regulatory agency may request copy of the Characterization Plan and Report

Characterization - Process

- Process consists of:
 - Planning the Characterization and defining requirements
 - Performing Sampling and Measurements
 - Analyzing the Data
 - Documenting the Results
 - Interpretation of the data
- Use of the data by Engineering (design) and Operations (performance)

Characterization - Uses of Data

- Data is used to:
 - Determine Scope of Work
 - Plan and Engineer Decommissioning
 - Select Decommissioning Techniques
 - Develop Waste Disposal Strategies
 - Refine of Cost Estimates and Schedules
 - Provide Input into Decommissioning Plan
 - Data needed for Approval Process
 - Assess Health and Safety Impacts to Workers and Public
 - Development of H&S Programs
 - Development of Radiological End - Point Criteria
 - Input for Planning Final Survey

Characterization - Identify Conditions

- Radiological
 - Contaminated and Activated Structures and Equipment
 - Spills and Leaks to Environment
 - Build-up of Routine Deposition
- Hazardous Materials
 - Contained in equipment
 - Spills in Structures and Environment
 - Building Materials
- Other Personnel Hazards
 - Potential Physical Hazards Expected
 - Hazardous Atmosphere / Confined Spaces
 - Stored Energy Sources - electrical, mechanical, etc
 - Building / Equipment Defects

Characterization - Preparation

- Gather existing data (Historical Site Assessment)
 - focus on two types of information
 - Existing radiological / hazardous material data
 - Obtain “acceptable knowledge”
 - Construct conceptual site model
 - Clues for what, where and how to monitor/ sample
 - Data required to conduct characterization
 - Survey Maps
 - Access Points
 - Safety Issues

Characterization - Preparation

- Conduct Staff Interviews (current and retired)
 - Anecdotal information related to spills, missing sources and operational practices
- Research and Review of Documentation
 - Licenses, permits, authorizations
 - Notices of inspections and violations
 - Documented incidents and accidents
 - Routine monitoring data
 - Maps, construction photographs, plot plans
 - Geological / Hydrogeological, meteorological data
Characterization - Preparation

- Tour / Observe Facilities and Operations
- Look for stains, leaks and defects
- Possible scoping measurements
- Determine Characterization Objectives
 - (What information do we want to derive from the characterization data?)
 - Identify radionuclide mixtures
 - Volume soil requiring excavation and disposal

Characterization - Goals

- Estimate volume of structural material requiring dismantling and disposal
- Determine structural surface areas requiring decontamination
- Prepare a list and volume of equipment requiring dismantling and disposal
- Document work and environmental hazards

Characterization - Preparation

Examples of Hazardous Material Data

- Presence of lead, chromium and other heavy metals, asbestos and PCBs and the depth of penetration of these contaminants into concrete, structural surfaces, subsurface soil, and other media

- Areas of concern include:
 - Paints and other surface coatings
 - Site soil, sediment or groundwater
 - Systems or components

Characterization - Preparation

- Determine Data Quality Considerations
 - (What will make the data usable?)
 - Ability to detect contaminants present
 - Appropriate analytical methods and equipment
 - Background masking
 - Ability to detect contaminants at relevant concentrations
 - Clean-up criteria

Characterization - Preparation

- Ability to assure quality of data
 - How will documentation errors be detected and corrected?
 - What are the Data Quality indicators?
 - Are personnel experienced and qualified?
 - Are characterization processes controlled?

- Not unknowingly change the facility
 - Will sampling cause contamination to migrate?

Characterization - Formulate the Plan

- Formulate and Document Plan
 - Determine What Raw Data is Needed
 - Examples of Radiological Data
 - Locations, spatial distribution, radioisotopic makeup, and contamination levels on structural surfaces
 - Depth of radioactive contamination penetration into surfaces
Characterization - Formulate the Plan

- Monitor and sample to confirm location, distribution, radioisotopic makeup, and radioactivity levels in or on contaminated equipment, ducts, fixtures, etc.
- Document radiation exposure rates from equipment and general area
- Confirm induced radioactivity from neutron irradiation in reactor components and associated structures through monitoring and sampling
- Use drawings, calculations and information from HSA to determine number and locations of samples and monitoring. Consider radiological, hazardous materials, and industrial safety

Characterization - Formulate the Plan

- Select Analytical Techniques

 - Many techniques are a carry over from operations (Health Physics, Environmental Monitoring, Waste Assay)
 - Gamma exposure rates
 - Beta dose rates
 - Removable gross beta and alpha surface contamination
 - Surface soil and water sampling and analysis
 - Isotopic analysis

Characterization - Monitoring Instruments

- Portable gamma spectroscopy
- MicroR meters

Characterization - Direct Reading Instruments

- Low background alpha-beta counters
- Gamma spectroscopy

Characterization - Formulate the Plan

- Others may be new or different from operations (methods and / or levels encountered)
 - Paint sampling and analysis
 - Direct measurement of contamination on surfaces
 - Bulk sediment sampling in equipment
 - Subsurface water, soil and bedrock sampling
 - Surface / substrate (concrete) depth sampling
Characterization - Laboratory Liquid Scintillation Detectors

Example of Data – Gamma Spectroscopy

Characterization - Analytical Techniques

- Some items cannot be sampled or may not be directly measurable
 - Inaccessibility (buried duct)
 - High or lethal radiation levels (Reactor core)
 - Risk of contamination spread (floor of Hot Cell)

Characterization – Preparing the Plan

- Locate Measurement and Sampling Locations
 - Contaminated Structures
 - Unbiased Survey
 - Homogeneous areas
 - Unique mode of deposition, surface and material
 - Statistical representation (random / systematic sampling)
 - Scanning to locate anomalies
 - Classify area (or sub areas) as clean or contaminated

Characterization – Preparing the Plan

- Biased Survey (suspected worst case single point locations)
- High likelihood of hot spot contamination (Scans / Historic Site Assessment results / Professional Judgment)
- Spill locations, sumps, drains, floor of hot cell
- Investigation to bound area, volume and concentrations

Characterization – Measurement & Sampling Locations

- Contaminated Systems and Equipment
 - Determine isotopic concentration and inventory
 - Correlate concentration / inventory to gross gamma / in-situ gamma spec.
 - Access for sampling representative equipment on system basis for complete isotopic / benchmarking (safety / practicality considerations)
Characterization - Measurement & Sampling Locations

- Environmental
 - Soil, sediments, water and bedrock
 - Similar basis as structures (biased and unbiased approaches)
 - Surface deposition vs. Under buildings leaks

- Background (Reference areas)
 - Unaffected by site
 - Up wind
 - Up ground water gradient
 - Certain of isolation
 - Similarity of conditions and materials
 - Same geological parameters as on-site characterization
 - Statistical comparison to site data
 - Consider: Is contaminant in background?

Work Area Requirements - Information

Current data, on a task by task basis, is required to:

- Specify where and what to remove or decontaminate
- Gauge effectiveness of D&D techniques
- Determine readiness for final surveys

Prior Characterization Data is Only a Starting Point
Will Change as soon as work starts
- Data may have been limited or have a high uncertainty
 - Characterization provides a statistical picture
 - Interference from high background (precludes effective scanning to locate anomalous “hot spots”)
 - Full access may have been unavailable until “opened up” by decommissioning activities
 - Subsurface soil under structures or equipment
 - Buried/embedded equipment
 - Flooded pools/canals or equipment
 - Surfaces behind/under equipment

Work Area Requirements – Accident Scenarios

- Possible consequences -
 - Release of airborne particulates outside of controlled areas and off site
 - Contaminate clean surfaces and soil around the facility
 - Increase radiation levels at uncontrolled and offsite locations

Work Area Requirements

- Start with largest radiation sources and areas with greatest contamination and work toward clean areas
- First remove equipment, then structural contamination, then subsurface soil
 - Reduces facility radiation levels
 - Reduces potential for re-contamination
 - Opens up work areas to provide access
Work Area Requirements

- Specify structural surfaces to be decontaminated
- Sort equipment as contaminated or potentially able to be cleared with subsequent certification
- Specify soil to be:
 - Directly removal as contaminated
 - Removed as potentially clean with subsequent certification

Work Area Requirements

- Keep process moving - must be rapid to keep work going but be efficient
- Give preference to ‘in-the-Field’ analysis
- Use gross qualitative indicators of contamination/activation (levels many times release criteria)
- Gross beta or gamma scans of surfaces or sample media (ion chamber to GM or NaI)
- Use same basic techniques as characterization survey
- Contaminated surfaces (concrete, metallic and other building materials)
- Contaminated concrete volumes (cracks, joints, diffusion)
- Contaminated soil (surface, under structures, and sub-surface plumes)

Work Process Photos

- High radiation field probe measurement of waste item
- Work in progress measurement

Work Area Requirements

- Activated volumes
 - (concrete bio-shields, reactor components)

Remember:
Monitoring techniques should evolve as working conditions change from high levels to very low levels of radiation and contamination

Work Area Requirements

- Progress toward in-situ/in-field quantitative determinations (1-3 times release criteria)
 - Direct beta (systematic locations)
 - Collimated gross gamma scans (NaI)
 - In-situ gamma spectroscopy (background issues)
 - Field laboratory screening

Note: Contamination depth may vary by location, especially if cracks, seams or expansion joints are present

Example of an Iterative Process

Scrape a 1 cm layer of contaminated concrete from a surface and survey newly exposed surface. Repeat process until entire surface meets release criteria.
Sample Locations
- The exact location must be recorded properly each time a sample is taken
- Use of traditional map-spotting techniques are slow and require trained personnel
- Modern positioning techniques: global positioning system (GPS) and microwaves, ultrasound and laser ranging systems are preferable

GammaCam (Gamma Camera)

Hazard Evaluation
- Initial static conditions may not be the same conditions encountered during decommissioning work
 - Generate airborne dust and fumes, loose contamination, and hot particles
 - Stir up existing dust
 - Expose or build up unforeseen sources of radiation

Hazard Evaluation
- Potential hazards unique to each task or work area must be identified
 - Depend on radiation sources
 - Decommissioning work scope
 - Location of personnel and their expectations
- Active work areas
- Support areas

Radiation Protection
- Airborne dust and dispersible contamination
 - Cutting of contaminated/activated materials
 - Surface decontamination
- Frequent breaching of building containment
 - Removal of contaminated structures
 - Need to access contamination
- Progressive removal of protective systems and barriers
 - Breaching equipment
 - Disabling radiation and criticality alarms
 - Removing shielding
Radiation Protection

- Movement of large volumes of dispersible waste materials
- Outdoor work and handling of radioactive materials
- Potential for rapid and unexpected changes of radiological conditions in work areas
 - Dropped/Breached waste containers
 - Unshielded or moved sources
 - Fires or explosions
- Need immediate data at any time
 - How to best evacuate personnel
 - Where to impose protective measures

Radiation Protection

- Appropriate worker controls are in place, considering existing/potential conditions
 - Anti-Contamination clothing
 - Respirators
 - Multiple TLDs, SRDs, alarming dosimeters

Radiation Protection

- Required monitoring in active areas
 - Work area dose rates
 - Particulate airborne radioactivity
 - Contamination

Radiation Protection - Monitoring

- Personnel alpha monitor
- Hand and foot monitor
- Manual method

Other Areas

- Hazards are minimal but could be affected by activities within active work areas if controls should fail
 - Waste storage & equipment staging areas or support zones
 - Inactive decommissioning work areas
 - Areas adjacent to active areas with recognized hazards (outside a containment tent)
Other Areas

- Required monitoring in other areas
 - Area exposure rates
 - Particulate airborne radioactivity
 - Contamination

Potential Airborne Particulate Releases

- Continue permitted building air discharge vents and stacks (particulate filter sample with alarming rate meter and dose rate monitors)
- Inside buildings, install continuous low volume particulate air samplers near doorways and other potential building openings (degraded negative pressure due to multiple openings, wind effects)

Potential Airborne Particulate Releases

- On site outdoors, install continuous long-term low volume particulate air samplers near outdoor work areas (up- and down-wind) where loose or large amounts of packaged materials are handled
- Off site, install continuous long-term low volume particulate air samplers near down-wind receptor locations and up-wind

Waste Processing

- Direct sampling of every package
 - Multiple laboratory analyses (U, Gamma spec, H-3, Sr-90, etc)
 - Very time consuming and expensive
- Estimation based on easily measured variables
 - Correlation to dose rate or gamma energy flux
 - By homogeneous waste stream

Waste Processing

- Identify individual waste streams
 - Homogeneous radionuclide mixture and ratio
 - Homogeneous matrix composition
 - Examples:
 - Activated biological shield concrete
 - Soil under hot cell
 - Primary reactor water equipment
Waste Processing

- Characterize waste streams
- Select sample media
- Determine complete radionuclide identities
- Determine average ratio
- Support packaging, shipment and disposal

- Determine correlation factors
- Determine waste geometries (drums, boxes, bags, intermodal containers)
- Select easily measured indicator variable (gamma dose, Co-60 gamma energy flux)
- Model using shielding codes/calculations to correlate measured variable to individual radionuclide concentrations, for each waste stream and geometry

Environmental Monitoring

- Surface and Soil Contamination
 - Continue permitted building air discharge vents and stacks (particulate filter sample with alarming rate meter)
 - Perform periodic surface contamination surveys (loose contamination and hot particles)
 - Waste material, equipment, and personnel exit locations
 - Waste material and contaminated equipment storage locations
 - Perform soil sampling for exposed soil (as above)

- Dose Rates
 - TLDs at property line
 - TLDs at off-site occupied locations (close houses)
 - Periodic dose rate surveys of fence line
 - Periodic surveys of radioactive material area boundaries (waste staging yard)

Final or Verification Survey

- Follows the remedial action effort
- Requires strict controls are in place from the conclusion of the remedial action until the survey is performed and results are known
- The underlying assumption is that the remediated area is contaminated above release guides. The analysis of the results of the Final Survey will prove it is not.
- More details on final facility surveys to support site release from regulatory control are given in Lesson 26.14

Environmental restoration is an integral part of the decommissioning process
- Environmental restoration planning requires input from a number of sources
- End use of the site determines the degree of environmental restoration activities
- Restricted end-use versus unrestricted end-use has both short-term and long-term cost consequences
- Changing standards and regulatory requirements may affect long-term strategies

Summary
References

- IAEA WS-R-2
- IAEA DSS 332
- IAEA DSS 333
- IAEA WS-G-2.1, -2.2 and -2.4
- IAEA IAEA RS-G-1.1
- IAEA Safety Series #115
- IAEA TRS #334
- IAEA TRS #389
- IAEA Fundamental Safety Principles, DS298 – approved to be published, 2006