

Agencija za zaštitu od jonizujućih zračenja i nuklearnu sigurnost Srbije

e rate [µSv·h⁻¹] in the room 141 (after covering dry

Serbian Radiation Protection and Nuclear Safety Agency

PROGRESS IN DECOMMISSIONING IN SERBIA

I. Đorđević, M. Milošević, R. Pešić, PC Nuclear facilities of Serbia

Reactor Facility

Reactor name:	RA
Design:	former USSR
Location:	Vinča (outskirts of Belgrade)
Operator:	Public Company Nuclear Facilities of Serbia
Regulator:	Serbian Radiation Protection and Nuclear Safety
	Agency
Туре:	tank – graphite reflector
Power:	6.5 MW
Moderator:	heavy water
Primary coolant:	heavy water
First start-up:	December 1959
Date of shut-down	: August 1984
Final shut-down:	July 2002 – preparation for decommissioning

Fresh fuel shipment in August 2002

5046 HEU fresh fuel elements (app. 48 kg of enriched uranium) were sent to the Russian Federation in August 2002.This shipment was the first actual step in implementation of the RRRFR Programme.

Radiological Characterization Plan in 2003

Contract: Initial Planning for the Decommissioning of the RA Research Reactor

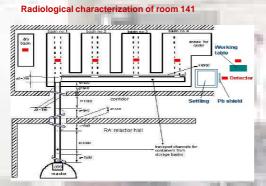
METHODS AND TECHNIQUES FOR RA REACTOR CHARACTERIZATION •Development of the 3D geometrical models for the detailed Monte Carlo calculations

- Development of 1D geometrical radial and axial models for the 1D transport calculation
- •Development of the calculation procedures

In situ measurements

- •Sampling and analyses
- •Sampling and analytical programme methodology •Quality Assurance

February 2004

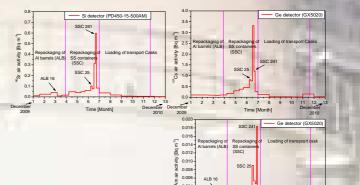

1

Government of Republic of Serbia and Ministry of Science, Technology and Development made a decision to repatriate the RA reactor's spent nuclear fuel to the Russian Federation.

September 2006 Contract for the transport of the RA reactor's spent nuclear fuel to the RF was signed by: International Atomic Energy Agency; Research and Development Company "Sosny"; Federal State Unitary Enterprise PA "Mayak"; Joint Stock Company "Tenex"; Vinča Institute of Nuclear Sciences.

November/December 2010 After 8 years of preparation on November 19th 2010 spent nuclear fuel from RA research reactor left Vinča. On December 22nd, after more than a month in transit, spent nuclear fuel arrived to Russian Federation, to facility for further treatment.

May 2011 Government of Republic of Serbia approved new regulations in the field of nuclear safety.


Equivalent gamma rays dose rate [µSv·h⁻¹] in the room 141 (before covering dry pool)

		Source2			Source3	MCNP-4C	AD2	
Detector	Source1	Dry pool			Spent	calculation	measured	
position	Settling	covered with Pb shield			Fuel &	without	without	
		0 cm	1 cm	2 cm	3 cm	Water	Pb shield	Pb shield
Working	0.43	0.22	0.02	0.00	0.00	0.33	1.0	1.0
table	±0.6%	±15%	±30%			±10%	±1%	±10%
Behind	3.10	0.17	0.05	0.01	0.00	0.30	3.5	3.3
Pb shield	±0.3%	±19%	±30%	±50%		±10%	±0.3%	±10%
Basin 4	0.49	0.33	0.07	0.02	0.01	5.80	6.6	6.5
	±0.6%	±11%	±30%	±40%	±50%	±4%	±4%	±10%
Basin 3	0.23	0.66	0.13	0.09	0.05	7.00	7.9	8.1
	±0.8%	±9%	±22%	±30%	±40%	±3%	±4%	±10%
Basin 2	0.12	1.40	0.40	0.19	0.08	11.0	12.5	13.0
	±1.2%	±6%	±15%	±22%	±34%	±3%	±3%	±10%
Basin 1	0.08	4.90	2.70	2.00	1.60	8.00	13.0	13.2
	±1.5%	±4%	±6%	±7%	±9%	±3%	±3%	±10%
Dry basin	0.02	160.0	33.6	13.7	5.90	5.00	165.0	160.0
(1 m)	±2.0%	±1%	±2%	±3%	±5%	±4%	±1%	±10%
Dry basin	0.01	302.0	63.7	25.1	10.1	4.00	306.0	300.0
(floor)	±4.0%	±1%	±1%	±3%	±4%	±5%	±1%	±10%

			,	
Detector position	Source-2 Dry pool with 2.5 cm of iron shield	Source-3 Spent Fuel &Water	MCNP-4C calculation	AD2 measured
Working	0.06	0.33	0.8	0.8
table	±20%	±10%	±1%	±10%
Behind	0.07	0.30	3.5	3.3
Pb shield	±20%	±10%	±0.3%	±10%
Basin 4	0.10	5.80	6.4	6.8
	±15%	±4%	±4%	±10%
Basin 3	0.30	7.00	7.5	9.5
	±10%	±3%	±4%	±10%
Basin 2	0.6	11.0	11.7	11.0
Basm 2	±8%	±3%	±3%	±10%
Basin 1	8.7	8.00	16.5	22.0
Basm 1	±5%	±3%	±3%	±10%
Dry basin	49.5	5.00	54.5	60.0
(1 m)	±1%	±4%	±1%	±10%
Dry basin	98.5	4.00	102.5	100.0
(floor)	±1%	±5%	±1%	±10%

Equivalent gamma rays dose rate pool with 2.5 cm thick iron plates)

Radiological measurements during repacking and transporting of the RA reactor spent fuel elements

Experimental testing results of calculation dose rate gamma and neutron radiation

Škoda VPVRM cask	Average fuel burnup	Average contact dose rate of gamma radiation		Average contact dose rate o neutron radiation	
(Number of elements 2% ²³⁵ U/80% ²³⁵ U)	[MWd-t ⁻¹]	[µSv-h ⁻¹]		[µSv-h ⁻¹]	
		Measurement (FHT40G)	Numerical simulations	Measurement (Au &Zr foil)	Numerical simulations
VPVRM 009 cask (391/0)	6194.9 ±370	0.92±0.15	0.97±0.06	0.65±0.06	0.75±0.06

Sma

6

8

0.00

Radiological survey of hot cell No 11

Losse activity of ⁶⁰Co in hot cell No. 11 before decontamination

Smear position

From wall

From floor

From floor

From floor

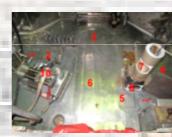
From floo

From floor

From wall From wall Loose activity of 60Co

[Bq·cm⁻²]

0.134±0.006


0.185±0.008

1152.3±46.3

8319.6±333.0

678.4±27.0 371.6±14.8

446.1±17.8

Smear	Smear location	Loose activity of ⁶⁰ Co [Bq·cm ⁻²]
1	From floor	3.0±0.1
2	From floor	5.8±0.2
4	From floor	10.9±0.4
5	From floor	48.5±1.9

9 From floor 1570.1±62.9 10 From floor 47205.1±1870.0

Losse activity of ⁶⁰Co in hot cell No. 11 after second decontamination

References

M.J. Milošević, V. Ljubenov, "Radiological Characterization Plan for the Purpose of Decommissioning of the RA Research Reactor," IAEA TC project, DECOMMISSIONING OF THE RA RESEARCH REACTOR IN VINČA INSTITUTE, Contract: (YUG4028-92441A), Vinča Institute of Nuclear Sciences, Vinča, 2003.

M.J. Milošević, "Radiological Safety Assessment During Repackaging and Transporting of the RA Reactor Spent Fuel Elements," Vinča Institute of Nuclear Sciences, Report Vinča-NTI-158, Vinča, April 2008.

M.J. Milošević, "Description and Validation of Methods Used for Safety Assessment of the RA Reactor Spent Fuel Elements Transporting, " 55th ETRAN Conference, Banja Vrućica (Teslić, RS, BiH), June 6 – 9, 2011.

Workshop on the Review of a Decommissioning Plan Research Reactor Decommissioning Demonstration Project (R2D2P)

4-8 July 2011, Bucharest-Magurele, Romania