Legal and Regulatory Framework on Decommissioning of Research Reactors

A Presentation of Brazil for the Research Reactor Decomissioning and Demonstration Project (R²D²P)

Radioactive Waste Management, Treatment & Disposal Framework

by Eduardo Figueira da Silva

Radioactive Waste Division

Brazilian Nuclear Energy Commission (CNEN)

Manila, June 2006

- The largest and most populous country in Latin
 Amorica
- Population: 185 million
 - 80% living in the urban
 - 41 million households
 - Population Growth:
 - 1.38% (1991-96)
 - 3.3 million square miles

Brazilian Nuclear Energy Commission

 In Brazil, the Brazilian Nuclear Energy Commission (CNEN) is the governmental body responsible for promulgation and enforcement of regulations concerning radioactive waste management and disposal.

National Programme

 According to the law, CNEN is entitled to receive radioactive wastes and select a site for their final emplacement, as well as construct (directly or through contractors) (Technical-operational issues) and license for operation the repository for such wastes (Regulatory-Safety issues)

Previous AIEA envolvement-DRS

 A strong effort has been made by CNEN (DRS), over the last 8 years, towards the development of a national capability for radioactive waste disposal assessment.
 Personnel have been trained in modeling radioisotope migration in soil and groundwater and in radiological impact assessment.

Previous AIEA envolvement-DRS

- Development of in-house safety assessment computer codes (DRS) for different purposes and with diverse capabilities:
- a. MIGRAD Code One-dimension screening Model;
- b. Homogeneous Two-dimension Screening Model;
- c. Heterogeneous Two-dimension Screening Model;
- d. General Two-dimension Model;
- e. Homogeneous Three-dimension Screening Model.
- For the accomplishment of these tasks, the previously established IAEA Project BRA 04-046, carried out for the period 1997-1999, has provided significant support in terms of scientific visits, fellowships and expert missions.

Nuclear and Radioactive Installations

- Two Nuclear Power Plants
- Four research reactors
- One Pilot Scale Fuel Cycle Facility, including conversion U → UF₆ and U enrichment
- One Fuel Element Assembly Facility
- One Monazite Sand Processing Facility
- Two Uranium Mine and Milling Facilities
- Mineral-industrial activities (Niobium, tantalum, zirconium etc.)
- Petroleum exploitation (NORM)
- 3500 Medical, Industrial and Research Facilities

Radioactive Waste Classification

• Follows IAEA classification

Categories	Description
I - Exempt Waste	Activity levels at or below clearence levels, which are based on an annual dose to members of the public of less than 0.01 mSv.
II - Low and Intermediate Level Waste	Activity levels above clearence levels and thermal power below about 2 $\mbox{kW/m}^3.$
II.1 - Short Lived Waste	Restricted long lived radionuclide concentration (limitation of long lived alpha emitting radionuclides to 4000 Bq/g in individual waste packages and to an overall average of 400 Bq/g (per waste package).
II.2 - Long Lived Waste	Long lived radionuclide concentrations exceeding limitations for short lived waste.
III-High level Waste	Thermal Power about 2kW/m³ and long-lived radionuclide concentrations exceeding limitations for short-lived waste.

Brazilian regulations

BRAZILIAN REGULATIONS	PUBLICATED	IAEA REGULATIONS	SITUAÇÃO ATUAL
NE - 1.10 :: SEGURANÇA DE SISTEMAS DE BARRAGEM DE REJEITOS CONTENDO RADIONUCLÍDEOS (SAFETY OF MINING WASTE DAM)	D.O.U. 27 DE NOVEMBRO DE 1980	NO	
NE - 5.01 :: TRANSPORTE DE MATERIAIS RADIOATIVOS (TRANSPORT OF RADIOACTIVE MATERIAL	D.O.U. 01 DE AGOSTO DE 1988	ST-R-1	BEEING REVISED ST-R-1 DA AIEA
NE - 5.02 :: (SPENT FUEL STORAGE AND TRANSPORTATION)	D.O.U. 17 DE FEVEREIRO DE 2003	ST-R-1	
NE - 6.05 :; GERÊNCIA DE REJEITOS RADIOATIVOS EM INSTALAÇÕES RADIATIVAS WASTE MANAGEMENT	D.O.U. 17 DE DEZEMBRO DE 1985	111-F , 111-G-1.1, DS292, WS-G-2.7, DS336	BEEING REVISED 111-F , TECDOC 1000, E 111-G-1.1

Brazilian regulations

	ELOCAIS PARA DEPÓSITOS DE REJEITOS RADIOATIVOS SITE SELECTION LLW	DE 1990		
DE E	NE-6.09-CRITÉRIOS DE CEITAÇÃO PARA DEPOSIÇÃO E REJEITOS RADIOATIVOS DE BAIXO E MÉDIO NÍVEIS DE RADIAÇÃO ASTE ACCEPTANCE CRITERIA	D.O.U. 23/09/2002		
SEC RAI INS IND SA	4.01 REQUISITOS DE GURANÇA E PROTEÇÃO DIOLÓGICA PARA STALAÇÕES MÍNERO- DUSTRÍAIS FETY OF MINERAL- DUSTRIAL FACILITIES		WS-G-1.2	

DESOMISSIONING	WS-G-2.1. WS-G-2.2,	
DONT HAVE	WS-G-2.4	
CONTAMINATED SITES DONT HAVE	DS332	
SPECIFIC FOR EFFLUENTS DONT HAVE	WS-G-2.3	PARTE IN CNEN-NE-6.0 AND CNEN-NE-3.01
COMODITIES DONT HAVE	RS-G-1.7	
PRÉ-DISPOSAL OF HLW,LILW	WS-G-2.5, WS-G-2.6 DS353	PART ON CNEN-NE-6.0 AND PART IN THE DRAFT ALREADY MADI

BOREHOLES DONT HAVE	DS335
MONITORIG FINAL DISPOSAL SITES (CASE BY CASE)	DS357
NORM DONT HAVE	DS352
OPERATION OF DEEP GEOLOGICAL DISPOSAL DONT HAVE	DS356, 111-G-3.1

Waste management policy in Brazil

- CNEN is responsible for the reception and final disposal of radioactive waste
- Waste management and disposal regulation is also a responsibility of CNEN
- Single national repository
- LASER (Radiological Safety Laboratory)
 - -Conceptual → integrated installation for treatment and storage of L&ILW awaiting final disposal

Present radwaste disposal policy in Brazil comprises the main guidelines presented below:

- Low and intermediate-level wastes (L&ILW) from NPP's to be stored (interim storage) at NPP's site;
- Final disposal of L&ILW from NPP's at National Repository for Radioactive Wastes yet in the planning phase;
- L&ILW from radioisotope applications in industry, medicine and research to be collected, treated and stored at CNEN's Institutes, awaiting final disposal;
- Goiânia accident waste already disposed of at Goiânia Repository (closed and undergoing institutional control for 300 years);

Present radwaste disposal policy in Brazil, comprises the main guidelines presented below:

- Waste from mining and milling installations to be stored on site and disposed of on site at sealed waste dams;
- Final disposal installation (national repository) still in the planning phase. Present work pace considers a horizon of 10 years to make it operational.

Thank you