

energie atomique - energies alternative

EMRASS II Vienna jan 2011

Philippe GUETAT, Critical Parameters

CEA France

October 2010

1

• 700 L / year of rain

HTO soil (Bq/I) ²	69	231	132
HTO soil (Bq/l) 0.3 A _{vap} +0.7 A _{rain}	68	239	140

 $300 \text{ L.y}^{-1} \text{ of dry vapor } / 8 \text{ g.m}^{-3} => 1.2 \ 10^{-3} \text{ m.s}^{-1}$ Supposed to be between 10^{-3} and 10^{-2}

LCPR-AC

Free water activity assessment

- $C_{\text{veg free w}} = H_r C_{\text{air m}} + (1-H_r) C_{\text{soil}}$ IAEA tecdoc 1616
- this means that free water activity is practically equal to air moisture activity
- In practice it is not true.

LCPR-AC

energie atomique - energies alternative

Free waters

(Boyer)

October 2010

Measures in Free water of lettuce : light

Nara Tritium 2010

Measures in free water of lettuce : darkness

October 2010

Nara Tritium 2010

$$\begin{split} & [C_{TFWT} = [RH \cdot C_{am} + (1 - RH) \cdot C_{sw}] / \gamma , \\ & C_{pfw}^{OBT} = (1 - WC_p) \cdot WEQ_{p} \cdot R_p \cdot C_{TFWT} , \end{split}$$

Proposal for temperate climate – low rain intensity

$$C_{\text{free w}} = [0.4 \text{ } C_{\text{am}} + 0.6.C_{\text{sw}}]]$$
 and $C_{\text{sw}} = 0.3 \text{ } C_{\text{am}} + 0.7 \text{ } C_{\text{rain}}$

Keep : $C_{comb w} = WEQ_p.R_p.[RH.C_{am} + (1-RH).C_{sw}]]$ but R_p to be reassessed

$$C_{\text{vegetable}} = WC_{p}. C_{\text{free w}} + (1-WC_{p}).C_{\text{comb w}}$$

LCPR-AC

Main parameters ?

To simplify

- Plenty parameters to know if the final yield is 0.6 or 0.8 kg/m². do we care ?
- Exchange velocity for free water :
 V_e = LAI / r : m dA_f/dt = V_e (C_{air}-C_{sat} A_f) Resistances should be more illustrated
- Incorporation rate in organic matter.
 - When the plants feel well : Yield, day.°C, % of water in Org Matter.
 Incorporation rate of HTO in OM in easy conditions.

Soil water contribution

- Potential Evapotranspiration
- State of soil water content humidity
- Real Evapotranspiration : give a correcting factor, by a factor of max 5.
- To use directly for incorporation factor in organic matter.

- Transfer from soil.
- Deposition on soil of the order of 10⁻³ to 10⁻² m/s. about the same than in plants.
- Dilution in some 100 L/m^2 .
- But decrease much slower: ETR/Soil content
- Can be considered as a "normal situation" for the soil pathway.

- Concentration of rain about 3 to 5 times lower than air moisture. (except at the foot of the stack)
- Dilution in the soil water about 100.
- Same approach as in previous slide.
- Question of the direct leaves transfer.
 - Time of input = time of release + Time of evaporation.

- Say that the correction of temperature could be OK. (Day °C)
- On metabolism of incorporation
- On possible input of water
- Should consider that decrease of activity occurs in the next day.
- Do we need something for the stomata ?

Field experiment in 2009 - Total OBT

Thank you for your attention

