Title Introduction Introduction

Short scale scenario

Vladimír Fuka, Josef Brechler

Dept. of Meteorology and Environment Protection, Charles University in Prague

Wien, 24.–28. January 2011

Image: A math a math

Title Introduction Introduction

Introduction

- Our model CLMM is a general-purpose high resolution code for atmodpheric CFD..
- It uses a Large Eddy Simulation framework, which requires high resolution and has large demands on computational time, but enables very accurate flow field computations.
- It's primary purpose are studies with lower uncertainties in inputs, than this one. (Faster less complex code would suffice)
- In principle it is able to cope with stability, but in a different way, than the simple stability categories and it could not be used for this study.

・ロト ・ 日 ・ ・ ヨ ・ ・

Title Introduction Introduction

Introduction

- Validation using Thopson's wind tunnel data (Atm. Env. 1993) of atmospheric dispersion in the presence of a building in many configurations.
- Differences of simulation and measurement were almost always less then a factor of 3 and mostly less than a factor of 2 (still not ideal, the work continues).

▲ 同 ▶ ▲ 国 ▶

Large Eddy Simulation Other numerical methods

Large Eddy Simulation

• Filtered momentum equations

$$\frac{\partial \overline{u_i}}{\partial t} + \frac{\partial \overline{u}_i \overline{u}_j}{\partial x_j} = -\frac{\partial \overline{p}}{\partial x_i} + \frac{\partial 2\nu \overline{S}_{ij}}{\partial x_j} + \frac{\partial \tau_{ij}}{\partial x_j}$$
(1)
$$\tau_{ij} = \overline{u}_i \overline{u}_j - \overline{u_i u_j}$$
(2)

Continuity equation

$$\frac{\partial \overline{u}_i}{\partial x_i} = 0 \tag{3}$$

Large Eddy Simulation Other numerical methods

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Other numerical methods

Projection (fractional step) method with a 3rd order Runge-Kutta method for time discretization.

Finite volume spatial discretization on a staggered grid.

Concentration field are treated in Eulerian manner, i.e. average concentrations in fixed grid boxes.

Large Eddy Simulation Other numerical methods

Dry deposition

Dry deposition

For dry deposition of particles we employ a semi-empirical scheme by Kharchenko (1997).

$v_{\rm d} = f(\mathbf{v}, d, D, z_0, u_*, \tau^+)$	(4)
where	(5)
d = particle diameter	(6)
D = coefficient of Brownian diffusion	(7)
$ au^+ = rac{u_{ m sed}}{g} rac{u_*^2}{ u}$	(8)

We found too late, that the v_d for larger particles is much higher, than suggested by Kasper and Govert.

Large Eddy Simulation Other numerical methods

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Turbulent inflow

- One of difficult problems in LES is imposing inflow boundary conditions, that are turbulent and as realistic, as possible.
- We generate the incoming field using random numbers.
- The generated flow has to have propper length scale and spectrum to contain the lower wavenumbers.
- Also correct correlation between velocity components is important.

Large Eddy Simulation Other numerical methods

Turbulent inflow

- We use the Reynolds tensor components reported in literature for neutral boundary layer scaled by the friction velocity (i.e. σ_u/u_{*}, σ_v/u_{*}, σ_w/u_{*}).
- The mean wind and stress profiles can be prescribed by the user.

Parameters I.

- The grid is always uniform, although generally the code is capable of nonuniform grid, some of the methods can be used only for uniform grid (for now at least).
- Two domains for computation: up to 50 m and up to 2000 m (both with some additional buffer zone) These were 2 separate computations.
- The wind velocities and directions were chosen by time averaging (3.8 m/s, 0.77 m/s, 2.3 m/s, 0.4 m/s)

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Parameters II.

• We used 4 separate classes of particle sizes that were treated independently each with fixed diameter and initial percentage.

0.2µm	39.6%
1µm	11.8%
8µm	37.8%
20µm	10.8%

Parameters III.

- The incoming flow had logaritmic profile. The turbulent stresses were computed using roughness length 10 cm.
- The roughness length for the ground surface was 3 mm.
- The initial cloud in the form of cylinder as we agreed, with the vertical distribution according to HOTSPOT.

A (1) > A (2) > A

Results

- The main feature that is common to all our computations is a much weaker decay of deposite activity with distance than measured (in other scenarios with released data).
- We tried to play with the initial aerosol distribution, but couldn't find anything clearly better.
- Also the 2 km run was at a rather coarse resolution of 12.5 m.

Deposition at the plume centerline

Short scale scenario

Percentiles of contaminated area

The percentiles of the contaminated area (only up to 2 km):

	test 1	test 2	test 3	test 4
50 %	4 ha	2.2 ha	4.8 ha	3.36 ha
75 %	12.6 ha	8.4 ha	14.2 ha	12.5 ha
95 %	29.5 ha	24.9 ha	30.6 ha	30.9 ha

We did not not compute the γ dose rates.