

34. Model setup and boundary conditions

- Dimensions CFD model: x=1000m / y=100m / z=2000m.
- CFD Model: *Transient simulation, with steady-state BCs.*
- Simulation time: 500-1000s, with a 1s time-step size.
- CFD Mesh:
 Polyhedral mesh elements.
- Turbulence model: $k \varepsilon RNG model.$
- Temperature: Energy calculation.

Geometry of the CFD model x=0 y=0 z=0

35. Initial release of the aerosols

- The deposition velocity for the smaller aerosols is increased significantly.
- The initial cloud remains $12m \times 7m \times 7m$.

Deposition parameters June 2010				
Droplet diameter (m)	Volume activity (%)	Deposition velocity (10 ⁻⁴ m/s)		
2·10⁻⁵	10.0	70		
6·10 ⁻⁶	46.6	10		
1·10 ⁻⁶	15.0	0.5		
2·10 ⁻⁷	28.4	0.01-0.02		

Deposition parameters January 2011			
Droplet diameter (m)	Volume activity (%)	Deposition velocity (10 ⁻⁴ m/s)	
2·10 ⁻⁵	10.0	80	
8·10 ⁻⁶	46.6	10	
1·10 ⁻⁶	15.0	1.5	
2·10 ⁻⁷	28.4	0.5	

38. ^{99m}Tc in the air and on the ground

^{99m} Tc contamination zones

^{99m} Tc activity on the ground surface per diameter category					
Droplet diameter (m)	R ₅₀ zone (m)	R ₇₅ zone (m)	R ₉₅ zone (m)		
January 2010) 7.4	16.6	42.1		
June 2010	13.7	36.3	55.6		
January 201	1 13.8	36.5	55.7		

39. Deposition of ^{99m}**Tc Test 2**

40. ^{99m}Tc in the air and on the ground

41. Conclusions January 2011 simulations

FINDINGS

- Despite the increase in deposition velocities the results from January 2011 are broadly similar to those presented in Seville.
- The deposition velocity for the smaller aerosols has less impact on the total deposition, due to the fact that the terminal velocity is comparatively low.
- The total amount of activity that is deposited onto the ground is increased from 1.6% (January 2010) to 4.7%. This is partly a results of the increase in the computational domain.

FURTHER WORK

• Complete the simulation for test 4.

KEY CONSIDERATIONS

• i. Quality of the boundary conditions, ii. quality of the airflow predictions and iii. quality of the dispersion / aerosol models.

42. CFD validation against windtunnel experiments

- For validation of the simulation model experimental data published by Lawson et al. is used.
- Wind tunnel experiments are performed on the dispersion effects from terrain obstructions in a neutral atmospheric boundary layer.
- The experiments are performed in the meteorological wind tunnel of the US Environmental Protection Agency (EPA).
- In the wind tunnel an axi-symmetric hill-shaped object is placed as shown below.

44. Release of ethane on the downstream side of the hill

- Release of ethane gas from 2 source points.
- Wind speed of 4 m/s.
- Atmospheric boundary layer is scaled.
- Ethane gas concentrations are measured near the ground and used for validation.
- Use of non-isotropic Reynolds stress turbulence model.

47. Conclusions from the validation runs

- From 10 hill height onwards there is good agreement with the experimental data.
- Directly behind the release point up to 10 hill heights downstream the the effects from the turbulent flow field are visible, but the comparison with experimental data is moderate.
- Accurate modelling of the ethane dispersion requires good representation of the wake flow behind the hill.
- Use of a non-isotropic turbulence model was essential to reproduce the experimental results.
- The similarities with the Pribram experiments suggest that the lessons learned also apply to the Pribram runs. These are:
 - > Apply non-isotropic turbulence model.
 - > Apply higher mesh resolution, particular in the downstream region.
 - > Apply high numerical accuracy to trigger instabilities in the flow-field

44. Conclusions from the validation runs

- From 10 hill height onwards there is good agreement with the experimental data.
- Directly behind the release point up to 10 hill heights downstream the the effects from the turbulent flow field are visible, but the comparison with experimental data is moderate.
- Accurate modelling of the ethane dispersion requires good representation of the wake flow behind the hill.
- Use of a non-isotropic turbulence model was essential to reproduce the experimental results.
- The similarities with the Pribram experiments suggest that the lessons learned also apply to the Pribram runs. These are:
 - > Apply non-isotropic turbulence model.
 - > Apply higher mesh resolution, particular in the downstream region.
 - > Apply high numerical accuracy to trigger instabilities in the flow-field

22. Model setup and boundary conditions

- Dimensions CFD model: x=1000m / y=100m / z=2000m.
- CFD Model: *Transient simulation, with steady-state BCs.*
- Simulation time: 500-1000s, with a 1s time-step size.
- CFD Mesh:
 Polyhedral mesh elements.
- Turbulence model:
 k-ε RNG model.
- Temperature: Energy calculation.

Geometry of the CFD model

23. Initial release of the droplets

- The starting point of the computation is a cylindrical or cubical formed cloud containing a uniform concentration of ^{99m}Tc.
- The explosion itself is not computed.
- The geometry of the cloud and its content are based on discussion with the WG9.
- The total activity as specified by in the start document.

Dia. versus activity in the cloud				
Droplet diameter Volume				
(m)	activity (%)			
2 [.] 10 ⁻⁵	10.0			
6 [.] 10 ⁻⁶	46.6			
1 [.] 10 ⁻⁶	15.0			
2 [.] 10 ⁻⁷	28.4			

24. ^{99m}Tc surface contamination (January simulation)

26. ^{99m}Tc in the air and on the ground

^{99m}Tc contamination zones

Droplet			R ₉₅ zone (m)	
diameter (m)	R ₅₀ zone (m)	R ₇₅ zone (m)		
Jan. sim. [′]	7.4	16.6	42.1	
June sim.	13.7	36.3	55.6	

^{99m}Tc activity on the ground surface per diameter category

NRG **30.** Dispersion of ^{99m}Tc Test 4 with bus ^{99m}Tc dispersion at t=100 s and xx Bq/m³ xŽz

32. Deposition of ^{99m}Tc Test 4 (June simulation)

33. Conclusions

CONCLUSIONS

- Initial plume conditions have a considerable effect on the deposition
- The deposition are not symmetric across the centreline for test 2 and test 3.
- Asymmetric results are mainly a result of the chosen wind direction.
- The chosen wind speed for test 4 is 0.3 m and is a rough estimate.

FURTHER WORK

- Validation of the dispersion calculations using windtunnel data from the ERCOFTAC database.
- Incorporating atmospheric instability into the simulation

Contents

1. Introduction

2. Mathematical background

- 2.1 Airflow modelling
- 2.2 Droplet dispersion
- 2.3 Radiation exposure

3. Model setup and boundary conditions

3.1 Model setup

3.2 Boundary conditions

4. Simulation results

4.1 Release of ^{99m}Tc in the atmosphere

4.2 Sensitivity analysis

5. Conclusions

1. Introduction

- Field experiments at NINCBS in Pribram
- Explosion of ^{99m}Tc in the atmosphere
- Explosion carried out on a helicopter landing side surrounded by forest
- Tests side is surrounded by forest and hills.
- Measurements include:
- Atmospheric conditions e.g. wind speed, direction temperature etc.
- Droplet specifications, like droplet size and volume activity.
- Surface contamination and subsequent dose rates.:
- Radioactive concentrations in the air.

Test side at NINCBS in Pribram

2. Mathematical background

- Computational Fluid Dynamics (CFD) The calculations are based on the CFD software Fluent[©], in-house algorithms are included to take account of nuclear decay, deposition and dispersion.
- Navier-Stokes equations
 The atmospheric flow is modelled using conservation equations for mass, momentum and energy.
- Dispersion and deposition of droplets Dispersion and deposition is modelled within an additional conservation equation.
- Pollution modelling
 Dispersion of the ^{99m}To pollutent

Dispersion of the ^{99m}Tc pollutant is based on atmospheric and thermal flow features.

3. CFD conservation equations

- The CFD computation is based on conservation equations for mass, momentum and energy.
- Turbulent motion is take into account with a k-ε turbulence model.
- Forest patches are considered with an extra sink term.
- A logarithmic boundary model with roughness height is applied to the ground.

CFD conservation equations

$$\rho(\nabla \cdot u_{k}) = 0 \qquad \text{Mass conservation equation}$$

$$\rho\left(\frac{\partial(u_{k})}{\partial t} + \nabla \cdot (u_{k}u_{l})\right) = -\nabla P + \nabla \cdot (\mu_{eff}) \nabla u_{k} + S_{u,l}$$
Momentum conservation equation
$$\mu_{eff} = \mu_{l} + \mu_{t} \qquad \text{Turbulent viscosity}$$

$$S_{u,k} = -\rho C_{d} a_{l} U^{2} = -\frac{1}{2} \rho C_{n} U^{2}$$
Forest patches
$$\frac{\partial \rho E}{\partial t} + \nabla \cdot \rho u_{k} E = -\nabla u_{k} P + \nabla \cdot (\Gamma_{T} \nabla T)$$
Energy conservation equation

38

4. Dispersion modelling of ^{99m}Tc

- The activity from ^{99m}Tc is based on an additional conservation equation.
- Turbulent diffusion is based on the k-ε turbulence model.
- Brownian diffusion, terminal velocity and nuclear decay are considered.
- For each droplet diameter a separate conservation equation is required.
- Evaporation is not included.

$$\frac{\partial C_m}{\partial t} + \nabla \cdot [(u + (v_{s,n}))C_i] = \nabla \cdot (\Gamma_m) + (D_m)\nabla C_m] + (S_{c,n})$$

$$\frac{\partial C_m}{\partial t} + \nabla \cdot [(u + (v_{s,n}))C_i] = \nabla \cdot (\Gamma_m) + (D_m)\nabla C_m] + (S_{c,n})$$
Droplet conservation equation
$$\frac{\Gamma_m}{\Gamma_m} = \mu_{eff} / \rho$$
Turbulent diffusion
$$D = \frac{k_B T C u}{3\pi \mu_i d_p}$$
Brownian diffusion
$$v_s = \frac{\rho_d g d_d^2}{18 \mu_a}$$
Terminal velocity
$$S_c = -\lambda C$$
Nuclear decay

5. Modelling of droplet deposition

- Deposition is applied as an extra sink term to the elements adjacent to the ground.
- The sink term is a function of the deposition velocity and concentration ^{99m}Tc in the numerical element.
- Only dry deposition is considered.
- Dry deposition considers: gravitational settling, turbulent motion and Brownian diffusion.
- Deposition due to rainfall is not considered, but can be applied.

6. Radiation exposure from ^{99m}Tc

- The dose rate in each element is computed at the end of the time-step and is based on the accumulated droplet deposition.
- The activity at each boundary facet is considered a point source.
- The dose rate is based on the air Kerma rate constant for ^{99m}Tc in air.
- The air Kerma rate constant (Γ_a) is 0.018 μGy⋅m²MBq⁻¹h⁻¹.

Calculation absorbed dose rate

$$\dot{K}_{a,j} = \Gamma_a \sum_{p=0}^{p=P_b} \frac{A_p}{r_{p,j}^2}$$

8. Initial release of the droplets

NZG

- The starting point of the computation is a cylindrical formed cloud containing a uniform concentration of ^{99m}Tc.
- The explosion itself is not computed.
- The geometry of the cloud and its content are based on data provided by the NRPI.
- Possibilities for an explosion model are feasible and need to be discussed in a technical forum.
- The total activity in the cloud is 1,058MBq.

Dia. versus activity in the cloud			
Droplet diameter Volume			
(m)	activity (%)		
2 [.] 10 ⁻⁵	10.0		
6 [.] 10 ⁻⁶	46.6		
1 [.] 10 ⁻⁶	15.0		
2 [.] 10 ⁻⁷	28.4		

9. Velocity boundary conditions

- Profiles for wind speed, kinetic energy and dissipation are based on a neutral atmospheric boundary layer.
- The wind speed is 4 m/s at 10m above ground.
- The turbulent kinetic energy is 0.27 m²/s².
- The dissipation is inverse linear with the height from the ground.

$$U(y) = u_{ABL}^* \ln\left(\frac{y + y_0}{y_0}\right)$$

Logarithmic velocity profile

$$k(y) = \frac{u_{ABL}^{*2}}{\sqrt{C_{\mu}}}$$
 Turbulent kinetic energy profile

$$\varepsilon(y) = \frac{u_{ABL}^{*3}}{\kappa(y + y_0)}$$
 Turbulent dissipation profile

10. Simulation results

- Simulation process:
 - I. Performed sensitivity simulations, 2. Fine-tune & calibrate simulation setup, 3. Performed final simulation
- Performed simulations include:
 - > 1 final simulation with droplet spectrum
 - > 10 simulations as part of the sensitivity analysis
- Simulations are benchmarked only against test 2 (15th May 2008) from the NRPI

11. Simulated atmospheric flow field

- Sustainable atmospheric flow
- Spatial variations in the grid resolution effect the sustainability of the flow field.
- Mesh sensitivity analysis was performed.
- Reduced wind speed in the forest patches
- Flow field is sensitive to wind speed, direction and forest settings
- Vortex formation in the wake area behind the forest

13. ^{99m}Tc in the air and on the ground

- The total deposition of ^{99m}Tc on the ground 500s after the explosion is <u>1.6%</u>.
- After 200s there is no further increase in ^{99m}Tc surface contamination.
- After 150-200s ^{99m}Tc reaches the outer edges of the computational domain.
- After 400s there is no significant concentration of ^{99m}Tc in the air.

1.0E+10 1.0E+09 1.0E+08 Activity (Bq) 1.0E+07 1.0E+06 1.0E+05 1.0E+04 200 400 600 0 Time (s) ^{99m}Tc activity in the air ^{99m}Tc activity on the ground

^{99m}Tc activity in the air and on the ground

NRG 14. ^{99m}Tc in the air and on the ground ^{99m}Tc activity on the ground surface per diameter category **Droplet diameter** Percentage Released Deposition deposition (m) activity (Bq) (Bq) (%) 2[.]10⁻⁵ / 2[.]10⁻⁷ 1.06[.]10⁹ $1.65^{-}10^{7}$ 1.6 I. Т 1 I. ١ 1

17. ^{99m}Tc dose rates at 1m above ground

Graph with average concentrations as function of time for 4 positions. The location of the 4 positions is shown in the adjacent picture.

19. Results from the sensitivity analysis

Ν	RG

Simulation	Input parameter	Released activity (Bq)	Deposition (Bq)	Percentage deposition (%)	R ₉₅ zone (m)
Default model input	Default	1.06 [.] 10 ⁹	9.16 [.] 10 ⁶	0.9	38.4

20. Conclusions

CONCLUSIONS

- CFD simulations give interesting qualitative results
- Effects from atmospheric conditions on the surface contamination are shown.
- CFD simulation results are very sensitive to atmospheric boundary conditions and initial cloud conditions.
- To reproduce the experimental results good climate data at the time of the experiment is required.

FURTHER WORK

- Incorporate a suitable algorithm to simulate the initial stages of the explosion
- Run a simulation for the final blind-test performed by the NRPI
- Other things that are of interest are: evaporation, wet-deposition & solar irradiation, LES calculation, automated topography

