Sustainable management of food production

Guideline levels

Beata VARGA Central Agricultural Office Food and Feed Safety Directorate HUNGARY

W8-2011₁

E X	MONITORING	DECISION Need of the soci economical possib	REGULATION ety,
Р	Radionuclide concentration i	in soil	Regulation for soil concentration for different land-use
Ε		Decision about la	nd-use
С			Suggestion for the subsequent land-use
-		Plan for subseque	nt land-use (iterative steps)
	Monitoring of soil and proc	duct from the field	
A			Suggestion of the use of the crop
Т	Dec	cision about the use	of the products (iterative steps)
 0	Monitoring of food-chain different stages of food pro		Regulation for radionuclide content of food and feed
N	Decisi	on about the consum or consumption for	prion of food or feed 2

AVAILABLE:

- Several innovative decision support systems
- Regulation of caesium content of food and feed as follow up of the Chernobyl accident (EU)
- Regulation for content of several isotopes in food following an emergency (EU)
- CODEX ALIMENTARIUS guideline levels for radionuclides in foods contaminated following a nuclear or radiological emergency for use in international trade
- Drinking water: ³H, indicative dose, ²¹⁰Po, ²¹⁰Pb, ²²²Rn
- Basic safety rule: 1 mSv/year additional dose for public (ICRP, IAEA, EU)

LACK:

Derived guideline levels for <u>foodchain</u> for normal situation: concentration values in food, feed and soil which regarded healthy with very low risk (according to the current knowledge), use <u>without any restriction</u>

GOAL:

<u>Isotope specific</u> guidelines levels for food, feed and soil derived from dose limits of inhabitants – use <u>normal</u> situation, <u>achievable conditions for remediation</u> work, <u>prolonged</u> emergency situation (longer than 1 year)

Limits in force for radioactive isotopes in food

(after emergency for a given period, import rate)

Follow-up (Chernobyl)	For future event	Codex Alimentarius
737/90/EEC now: 733/2008/EC	3954/87/Euratom	CAC/GL 5-2006
616/2000/EC	2218/89/Euratom	
1609/2000/EC	2219/89/Euratom	
1635/2006/EC	944/89/Euratom	
2003/274/EC	770/90/Euratom	

Values in force: ¹³⁷Cs and ¹³⁴Cs together:

370Bq/kg – food for children younger than 6 months

370Bq/kg – milk, milk-products

- 600Bq/kg other foodstuffs
- 10 times minor foodstuff (spices)

WHO Guidelines for drinking water quality (3rd edition) 2006: Screening levels gross-α, gross-β, ²²²Rn 100Bq/l

2001/928/Euratom: Limit: ²²²Rn - 100Bq/l ²¹⁰Po - 0,1Bq/l ²¹⁰Pb - 0,2Bq/l

4

<u>Guideline level</u> is a specified quantity above which appropriate actions should be considered.

D-values:

In March 2002, the IAEA's Board of Governors approved a Safety Requirements publication entitled "Preparedness and Response for a Nuclear or Radiological Emergency". The Requirements define a dangerous source as one "that could, if not under control, give rise to exposure sufficient to cause severe deterministic effects".

Define the antithesis of D-values - Introduction of S-values:

S-values can describe the safe food, when it is consumed there is a small probability of the stochastic effect, for sure there is no need of any kind of control.

Might be the final goal of the environmental modelling

Tool: isotope-specific guideline level-system, derived from dose limits for inhabitants:

radionuclide concentration in FOOD (ready 300 isotopes):
tolerance level derived from 0.1mSv/year
acceptable level derived from 1mSv/year

- radionuclide concentration in **FEED of ruminants**, pigs, poultry (ready 178): acceptable level derived from food acceptable level

- radionuclide concentration in SOIL (for different land-use)

deriving from: food acceptable level feed acceptable level for industrial use - exemption limit (?)

Guidelines for food:

Background level (important to know for not to be too strict, but regulation should not based on the multiplication of background level)

<u>Tolerance level</u> (risk 5x10⁻⁶):

- derivation of radionuclide concentration from 0.1mSv/year dose
- minimum(children below 1 year, adults)
- decision rule taking into account measurement uncertainty (Eurachem-CITAC guide)

<u>Acceptable level for children below 1 year</u> – from 1mSv dose (protection factor 5)

Acceptable level for adults – from 1mSv dose (protection factor 3)

Rounding rule – always down In case of more isotope simultaneous presence: sum of measured activity-concentration normalised by acceptable level < 1

Some values for the comparison -¹³⁷Cs

	Food	Effective dose	
Regulation	Bq/kg	Children < 1 year mSv/year	Adults, mSv/year
CAC/GL 5-2006	1000	0.42-4.2	0.72 -7.2
EU – follow up: children < 6 months	370	1.6	
EU – follow up: adult	600		4.3
EU –future: children < 6 months	400	0.4-1.7	
EU – future: adult	1250		2.2-8.9
Suggested for adult	30		0.3
Suggested for children below 1 year	30	0.2	
Suggested tolerance	9	0.06	0.09
Background (milkpowder included!)	0.15	0.0006	0.001

Feed – base of the derivation is the acceptable level for foodstuffs

Animal	Method of the derivation
Ruminants	Transfer to meat: minimum(concentration in feed of cow, sheep, goat) Transfer to milk: minimum(concentration in feed of cow, sheep, goat) Acceptable level: minimum concentration in feed (transfer to meat, transfer to milk) Decision limit = acceptable level – 2 x uncertainty of measured value (2.5% bad decision)
Pig	Acceptable level: Transfer to meat Decision limit = acceptable level $-2 x$ uncertainty of measured value (2.5% bad decision)
Poultry	Transfer to meat Transfer to egg Acceptable level: minimum concentration in feed (transfer to meat, transfer to egg) Decision limit = acceptable level $-2 x$ uncertainty of measured value (2.5% bad decision)

Feed

Commission Regulation (Euratom) No 770/90

Maximum permitted levels of radioactive contamination (caesium-134 and caesium-137) of feedingstuffs (as it is):

animal	Bq/kg
Pigs	1250
poultry, lambs, calves	2500
other	5000

Example: ¹³⁷Cs FOOD - 30Bq/kg in meat FEED – acceptable level ¹³⁷Cs: 70Bq/kg – 3.3mGy/year in force: 5000Bq/kg – 249mGy/year (1mGy/day: small probability of any effect for biota)

Protection of human being = protection of biota?!

Isotope	e Suggested acceptance level		Suggested a	Suggested acceptance level for feedstuffs		
	child < 6 month	adult	ruminants	pork	poultry	
³ H	5000	10000	-	-	-	
¹⁴ C	400	700	-	-	-	
³² P	20	100	200	900	2000	
³⁵ S	500	3000	1000	-	-	
³⁶ Cl	60	400	3000	-	-	
⁵¹ Cr	1000	10000	30000	-	-	
⁵⁴ Mn	100	600	40000	40000	100000	
⁵⁵ Fe	80	1000	8000	-	10000	
⁵⁹ Fe	10	200	1000	-	2000	
⁶⁰ Co	10	100	6000	-	6000	
⁶⁵ Zn	10	100	70	200	800	
⁷⁵ Se	30	100	900	100	100	
⁷⁶ As	60	200	-	-	-	
⁸⁹ Sr	10	100	2000	10000	3000	
⁹⁰ Sr	2	10	200	1000	300	
⁹⁵ Nb	100	700	8000000	-	1000000	
⁹⁵ Zr	70	400	6000000	-	2000000	
⁹⁹ Mo	100	700	30000	-	10000	
⁹⁹ Tc	60	600	10000	-	1000	

Isotope	Suggested ac	ceptance level	Suggested	acceptance leve	l for feedstuffs
	child < 6 month	adult	ruminants	pork	poultry
¹⁰³ Ru	90	500	20000	90000	-
¹⁰⁶ Ru	8	60	2000	-	-
^{110m} Ag	20	100	100000	-	-
¹²⁴ Sb	20	100	10000	-	-
¹²⁵ Sb	60	300	30000	-	-
¹²⁹ I	3	3	8	200	10
¹³¹ I	3	10	20	700	50
¹³⁴ Cs	20	20	40	40	100
¹³⁷ Cs	30	30	70	60	100
¹⁴⁰ Ba	20	100	1000	-	1000
¹⁴¹ Ce	80	600	100000	-	-
¹⁴⁴ Ce	10	80	20000	-	-
¹⁵⁴ Eu	20	200	-	-	-
¹⁹² Ir	50	300	-	-	-
²¹⁰ Pb	0.08	0.6	10	-	-
²¹⁰ Po	0.02	0.3	90	-	1
²²⁶ Ra	0.1	1	80	-	-
²³⁵ U	1	9	300	-	100
²³⁸ U	1	9	300	-	100
²³⁹ Pu	0.1	1	6000	-	-
²⁴¹ Am	0.1	2	500	-	2000
²⁴⁴ Cm	0.2	3	-	-	-

DERIVATION OF GUIDELINE LEVELS

Starting with ,,end-user" or top of the food-chain – limits for foodstuffs – risk assessment

Limits for feedstuffs **Transfer factors** and other information, like consumption rates Limit for soil for different use first(?): isotope-specific concentration range for 3 classified goal or(?): for at least 7 possible use at least for 4 main soil types

Goals

-Restricted use: forest -Controlled use: energy plants, agricultural production (crops for fodder, pasture, fruit, cereals) -Free use: green vegetables - small parcels

> Lots of site-specific info or wide ranges with high degree of conservatism

Food and feed production

Food : cereals maize leafy vegetable non-leafy vegetable leguminous vegetable root crops tubers fruits

Natural isotopes – root uptake

Available data: Pb, Po, Ra, Th, U

Feed: grasses pasture fodder leguminous

Soil types (not every type for every product): sand, clay, loam, organic

herbs		acceptable level for adult, Bq/kg fresh	TF kg/kg	soil, Bq/kg	acceptable level in soil, Bq/kg
Generic values for TF:	Pb-210	0,6	2,00E-02	30	30
- plant type: grass, fodder	Po-210	0,3	5,60E-03	54	50
higher; tubers, cereals smaller	Ra-226	1	4,00E-02	25	20
-soil type: organic, sand	Th-228	6	3,40E-03	1765	1700
higher	Th-230	2	3,40E-03	588	500
Calculation to be done	Th-232	1	3,40E-03	294	200
when	U-234	8	2,15E-02	372	300
only feed is produced	U-238	9	2,15E-02	419	400

Same logic for artificial isotopes – to be done

Understorey:

shrub layer (>0.5m) herb layer(< 0.5m)

moss layer

Available data for transfer of berries: mainly ¹³⁷Cs, ^{60}Co , ^{106}Ru , ^{125}Sb , ^{144}Ce , ^{154}Eu , ^{239}Pu – more study not in TECDOC

Acceptable level for ¹³⁷Cs in soil round down [min (mushroom, berries)]: 20Bq/kg Effective half-life: 7.5 years (Ukraine)

137 Cs	concentration in berries, Bq/kg dw	T _{ag} , m²/kg dw	acceptable level in soil, Bq/m ²	acceptable level in soil, Bq/kg
bilberry	227	5.00E-02	4.55E+03	57
cranberry	278	1.20E-01	2.31E+03	29
cloudberry	214	1.00E-01	2.14E+03	27
raspberry	173	3.00E-02	5.78E+03	72
blackberry	405	2.00E-02	2.03E+04	253
wild strawberry	195	4.00E-03	4.87E+04	609

	acceptable level in soil, Bq/kg
Sr-90	100
Cs-137	20
Ra-226	300
Th-228	600
Th-230	400
Th-232	100
U-234	600
U-238	800
Pu-239+240	700
	14

Suggested acceptable level in soil of forest, without any restriction derived from acceptable level for adults

Industrial plants

For industrial use - exemption limits

H. Vandenhove*, M. Van Hees : Fibre crops as alternative land use for radioactively contaminated arable land Journal of Environmental Radioactivity 81 (2005) 131-141

Purpose of producing:

- cleaning of soil sunflower (tobacco)
- get useful products even from a contaminated area fibre crops, willow

Circumstances: sandy soil is the most vulnerable – high T_{ag} values

	f	lax	hemp		
¹³⁷ Cs	acceptable level in soil, Bq/m²	acceptable level in soil, Bq/kg	acceptable level in soil, Bq/m ²	acceptable level in soil, Bq/kg	
Stem as biofuel	250 000	3125	1 050 000	13 125	
Fibre as building material			1 850 000	23 125	
Use of straw after retting / mechanically separated fibre as biofuel	free		740 000	9 250	
Seed flour	1 000 000	12 500	160 000	2 000	
Use of seeds for extraction of oil	free		600 000	7 500	

CHARACTERISATION:

Scale of contaminated area - survey Likely radionuclides present, concentrations, distributions Other contaminative processes and industries *Local background Geology and hydrogeology Soil types NEED OF SOCIETY Vegetation Land-use Population density Living habits*

Decision makers have to decide, from when and where sustainable management system is applied; deliberation of need, benefits and costs

RISK ASSESSMENT:

Source analysis Environmental transport analysis Dose and exposure analysis Scenario analysis (likely)

SELECTION OF POSSIBLE MANAGEMENT OPTIONS AGRICULTURE – LONG-TERM

Some important documents:

IAEA-TECDOC-1616: Quantification of Radionuclide Transfer in Terrestrial and Freshwater Environments for Radiological Assessments, 2009

ICRP publications : among them Supporting guidance 5, 2007 Publication 103, 2007

Remediation of contaminated environment – edited by G. Voigt and S. Fesenko Serie: Radioactivity in the environment, Volume 14, 2009

EC Radiation protection 122: Practical use of the concepts of clearance and exemption, Part I, 2000; Part II, 2001

Guidelines for soil description, FAO 2006, Rome

WHO - reference groups regarding the diet for the whole world

