Biota Modelling Working Group (WG4) Objectives

To improve Member State's capabilities for protection of the environment by comparing and validating models being used, or developed, for biota dose assessment (that may be used) as part of regulatory process of licensing and compliance monitoring of authorised releases of radionuclides

 Consider ICRP C5 output(s) & IAEA transfer handbook

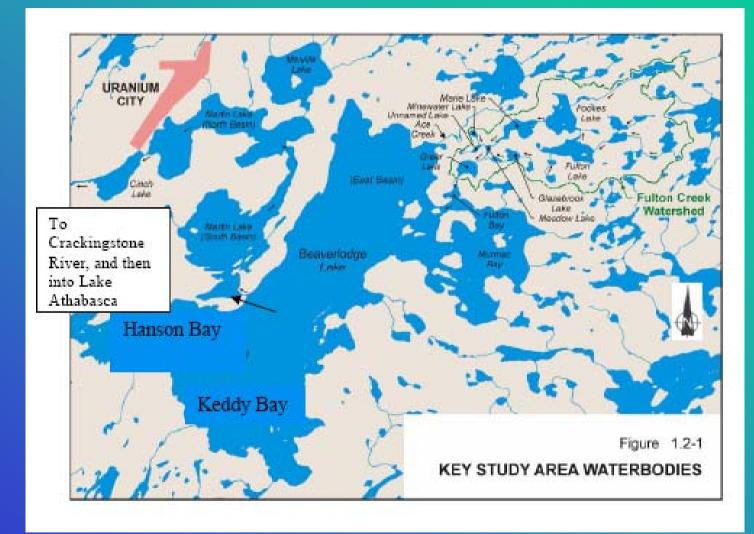
Workplan & agreed activities (Jan'09)

- Interim 2 d meeting July 2009 (IAEA Vienna)
- Scenarios/exercises:
 - U mine, Canada scenario to be presented to BMG July 2009 (interim results for Jan. 2010)
 - Waste trenches, Australia scenario to be presented to BMG Jan. 2010
 - Wetland, Sweden outline scenario to be presented to BMG Jan. 2010
 - DCC benchmarking exercise results July 2010
- Overview of dynamic modelling requirements & capabilities [chapter for final report]
- Assessment of heterogeneous distribution of radionuclides in media

'Exercise 3'

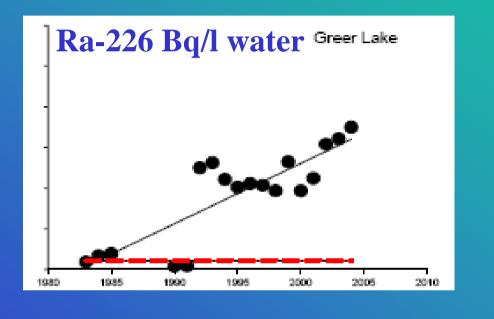
Purpose: Compare unweighted internal and external absorbed dose rates assuming 1 Bq kg⁻¹ in organism & 1 Bq unit⁻¹ media respectively Radionuclides considered – those from ICRP 'RAP' report (+⁵⁵Fe)

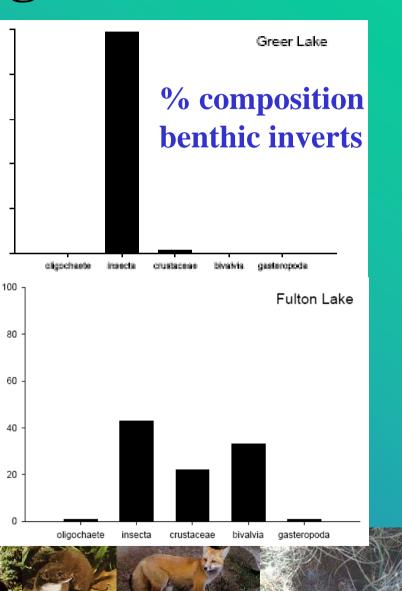
³H, ¹⁴C, ³²P, ³³P, ³⁵S, ³⁶Cl, ⁴⁰K, ⁴⁵Ca, ⁵¹Cr, ⁵⁴Mn, ⁵⁵Fe, ⁵⁷Co, ⁵⁸Co, ⁶⁰Co, ⁵⁹Ni, ⁶³Ni, ⁶⁵Zn, ⁷⁵Se, ⁷⁹Se, ⁸⁹Sr, ⁹⁰Sr, ⁹⁵Zr, ⁹⁴Nb, ⁹⁵Nb, ⁹⁹Tc, ¹⁰³Ru, ¹⁰⁶Ru, ^{110m}Ag, ¹⁰⁹Cd, ¹²⁴Sb, ¹²⁵Sb, ^{129m}Te, ¹³²Te, ¹²⁵I, ¹²⁹I, ¹³¹I, ¹³⁴Cs, ¹³⁵Cs, ¹³⁶Cs, ¹³⁷Cs, ¹⁴⁰Ba, ¹⁴⁰La, ¹⁴¹Ce, ¹⁴⁴Ce, ¹⁵²Eu, ¹⁵⁴Eu, ¹⁵⁵Eu, ¹⁹²Ir, ²¹⁰Pb, ²¹⁰Po, ²²⁶Ra, ²²⁸Ra, ²²⁷Th, ²²⁸Th, ²²⁹Th, ²³¹Th, ²³²Th, ²³⁴Th, ²³¹Pa, ²³³U, ²³⁴U, ²³⁵U, ²³⁸U, ²³⁷Np, ²³⁸Pu, ²³⁹Pu, ²⁴⁰Pu, ²⁴¹Pu, ²⁴¹Am, ²⁴²Cm, ²⁴³Cm, ²⁴⁴Cm, ²⁵²Cf


Did not include noble gases (Ar, Kr Rn) which had been requested by some group members

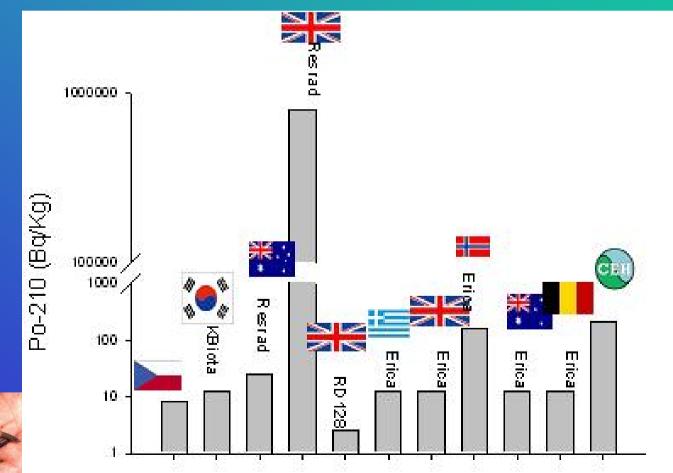
Model	Participant
RESRAD-BIOTA ['basics']	Sunita Kamboj (ANL, USA)
RESRAD-BIOTA [available software]	Mike Wood (Liverpool, UK)
EA R&D128 ['basics']	Jordi Vives i Battle (WSC, UK)
EA R&D128 [available spreadsheets]	Laura Newsome (EA, UK)
EA R&D128 [analogue approach]	Laura Newsome (EA, UK)
EDEN	Karine Beaugelin-Seiller (IRSN, France)
EPIC DOSES3D	Ali Hosseini (NRPA, Norway)
ICRP RAP report	Nick Beresford (CEH)
K-Biota	Dong-Kwon Keum (KAERI)
SUJB	Jan Horyna (SUJB)
VIC	Susumu Ryufuku (VIC)
DosDimEco	Geert Olyslaegers (SCK·CEN)
ERICA [default]	Laura Newsome (EA)/Hildegarde Vandenhove (SCK·CEN)
ERICA [create organism]	Mat Johansen (ANSTO)

Beaverlodge uranium mine (CNSC)


Beaverlodge


- Sediment, water & fish data available over a number of years [enables model-data comparison]
- Reduced invertebrate populations/effects in fish/multi-contaminants – interaction with WG6
- Provide informed opinion on real issue

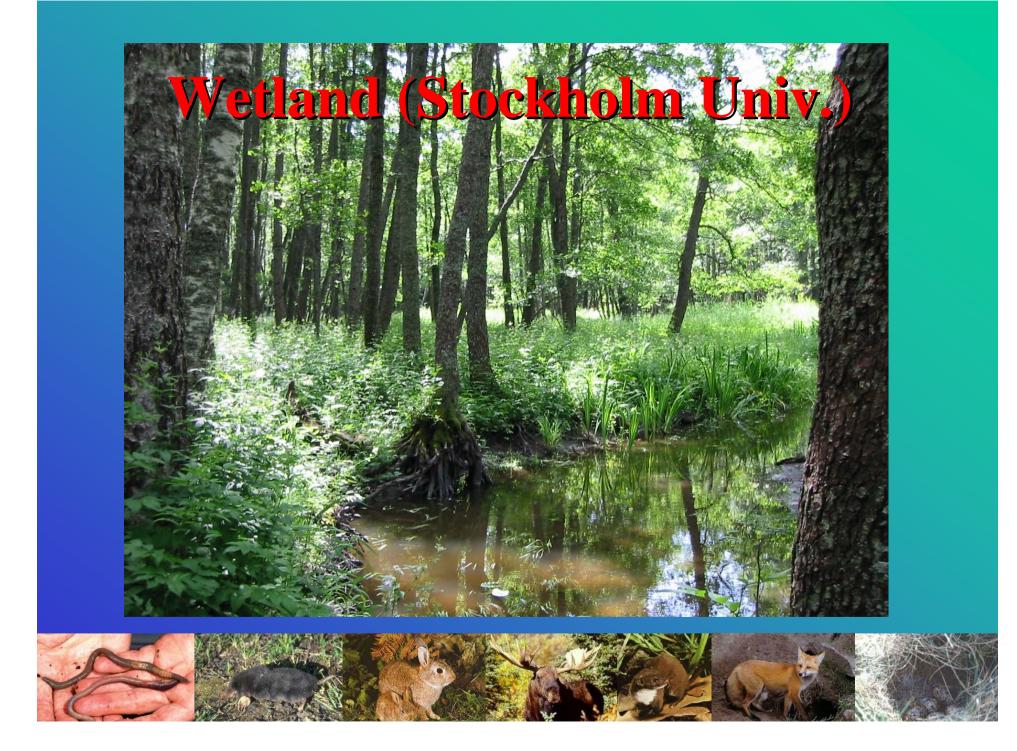
Beaverlodge



• Phase 1:

- Model-data comparison for fish (Po, Ra)

- Model:model benthic invertebrates & fish


Little Forest Burial Ground (ANSTO)

- Waste trenches (1960's)
- Radionuclides include: U, ³H, Pu Am, Cs, Sr, Co
- On-going research programme

Agenda overview

- Tuesday
 - DCC benchmarking
 - Beaverlodge
- Wednesday pm
 - Little Forest scenario
 - Wetlands scenario
 - Combined assessments (WG 1 interaction)

BWG outputs

Yankovich, T.L., Vives i Batlle, J., Vives-Lynch, S., Beresford, N.A., Barnett, C.L., Beaugelin-Seiller, K., Brown, J.E., Cheng, J-J., Copplestone, D., Heling, R., Hosseini, A., Howard, B.J., Kryshev, A.I., Nedveckaite, T., Smith, J.T., Wood, M.D. International model validation exercise on radionuclide transfer and doses to freshwater biota. J. Radiological Prot.

Beresford, N.A., Barnett, C.L., Brown, J.E., Cheng, J-J., Copplestone, D., Gaschak, S., Hosseini, A., Howard, B.J., Kamboj, S., Nedveckaite, T., Olyslaegers, G., Smith, J.T., Vives I Batlle, J., Vives-Lynch, S., Yu, C. Predicting the radiation exposure of terrestrial wildlife in the Chernobyl exclusion zone: an international comparison of approaches. J. Radiological Prot.

