Radiation Protection of the Environment Where we come from and where we want to go to

Gerhard Pröhl

2nd EMRAS II Technical Meeting IAEA Headquarters, Vienna 25–29 January 2010

Initiation

- Effects of ionizing radiation to biota early recognized
 - Many experiments were made

- e.g.: Khyshtym accident 1957: biota largely affected by radioactivity released to the environments
- Dumping of low level radioactive waste to the sea
 - Doses to humans supposed to be small due to the enormous dilution
 - Dumping sites in remote areas
 - Activities dumped were comparatively small
- Concerns on effects to biota that live at the dumping sites
 - London Convention:
 - Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter

Radiation and the Environment Some flashlights on the development

• ICRP 1977

• Level of safety ... required for ... humans ... thought likely to be adequate to protect other species, although not necessarily individual members of those species

• ICRP 1990

• The standards of environmental control needed to protect man to the degree currently thought desirable will ensure that other species are not put at risk

Remarks

- Approach focuses on the consideration of man only
- No quantitative support on the validity of this statement is given
- Environmental protection has got more attention meanwhile
- Validity is likely, if humans and biota considered are in the same ecosystem, but final proof is needed
- What about the level of protection, if man is not present
 - Remote areas
 - Marine ecosystems
 - Freshwater ecosystems

Radiation Protection and Environment Some flashlights on the development

- UNSCEAR, ICRP, IAEA
 - Reports, conferences, meetings on Radiation Protection of the Environment
- IAEA Safety Fundamentals (2006)
 - Principle 7: *Protection of "People and the environment, present and in the future, must be protected against radiation risks*
- ICRP
 - Publication 103:
 - Recommends the explicit consideration of Radiological Protection of the Environment
 - Publication 108
 - Provides a Concept and Use of Reference Animals and Plants

Protection targets (ICRP 103)

- Maintain biological diversity
- Conservation of species
- Protect health and status of
 - natural habitats
 - communities
 - ecosystems
- Targets are all related to
 - Populations or
 - Higher organisational levels
 - => No concern on individual organisms

QUESTION:

Which dose levels do not affect populations and ecosystems ?

Problems in estimating impacts on populations

- Enormous variability of species, habitats and communities
- Even in at a defined location population sizes may vary considerably due to
 - Weather
 - Diseases
 - Predator-prey relationships
 - Competition with other species in the same ecological niche

How to manage the enormous variability of life?

- Enormous variability requires definition of references
 - Reference Animals and Plants (ICRP)
 - Reference Organism (EU-funded projects FASSET and ERICA, 2000-2007)
- Criteria for selection
 - Global occurrence
 - Plants and animals
 - Terrestrial and aquatic
 - Different life stages considered
 - E.g.: eggs, larvae, adults
 - Different habitats
 - In soil, on soil, above soil
 - In water, in sediment

 \Rightarrow However, any selection is to some extent arbitrary

Reference Organisms (FASSET and ERICA) Reference Animals and Plants (ICRP)

Reference Animals and Plants — Reference Organism What are they?

RAPs and ROs are *hypothetical* entities

- Derived with the same principles and for the same purpose as the reference person
- Defined anatomical, physiological, and life-history properties
- Defined habitats
- Used to estimate internal and external exposures for that *type* of living organism
- => Provide a range of exposures that might occur in the environment under specific circumstances

Identification of dose levels that cause no or very minor effects

Conclusions from effects studies

Dose effects studies

- FASSET and ERICA (2000-2007)
 - Analysis of the existing literature to derive relationships between exposures to biota and effects
- UNSCEAR (2008)
 - Analysis of data on effects on biota
- ICRP 108 (2009)
 - Dose Consideration Reference Levels
 - Bands of exposure for Reference Animals and Plants
 that cause no or minor effects
- PROTECT (2007-2009)
 - Statistical Analysis of dose effects relationships to derive screening values

Summry of DCRLs

Summary of effects studies

- FASSET (2003):
 - Minor effects for dose rates < 100 µGy/h
- ERICA (2007)
 - Joint statistical analysis => No effects at 10 µGy/h
- UNSCEAR (2008), draft
 - Dose rate to the most highly exposed individual unlikely to have significant effects on communities:
 - 100 µGy/h for terrestrial species
 - 400 µGy/h for aquatic communities
 - < 1 Gy for acute exposures
- PROTECT (2009):
 - 10 µGy/h and below is an appropriate generic screening value
- ICRP: DCRL 4-40 µGy/h for most sensitive RAPs

Natural background to flora and fauna

- Terrestrial above-ground animals and plants
 - In the order of 1 μ Gy/h
 - Burrowing mammals
 - Lung doses: up to 70 μGy/h due to Radon & daughters (McDonalds 1998)
- Aquatic organisms
 - Typical: up to a few μGy/h
 - Maximum: a few ten μGy/h

Screening levels in relation to background

The values for

- Screening levels derived by ERICA and PROTECT
- Derived Consideration Reference Levels as derived for the most sensitive species proposed by ICRP
- Upper range of natural Background
 exposure
- are very similar

Application of DCRLs and screening levels

The values are no dose limits !

- Whether the data relate to actual or theoretical studies,
- The type of exposure situation
- The size of the area affected
- The status of the population
- The fraction of a population exposed, and
- The legal framework within which management action are taken

How to estimate exposures to biota ?

Dosimetry: Simplified geometries

Dosimetry

- Internal and external exposure
 - Aquatic and terrestrial organisms
- Mass of organisms: 10⁻⁶ 10³ kg
- Simplified assumptions
 - Spheres and ellipsoids
 - Homogeneous distribution
- Results consistent with dosimetry for humans
- Remaining issues
 - Impact of non-homogeneous distribution
 - Impacts of more complex shapes
 - Contribution of inhalation and exposure from the cloud

Comparison of external exposures to monoenergetic photons for humans and animals

Transfer of radionuclides to biota

- Quantity: Concentration Ratios
 - Water-aquatic organism [Bq/kg per Bq/L]
 - Soil terrestrial organism [Bq/kg per Bq/kg]
- Intensive review and collection of data
 - EU Projects FASSET and ERICA
 - ICRP
 - EMRAS I and II
- General findings
 - Large variability within and among species
 - Considerable data gaps
 - Many conservative values

Transfer of radionuclides to biota (cont.)

- Overall uncertainty higher than for the dosimetry
- Limited number of species is included in the estimation of the transfer
 Broadening the data base
- Data allow a rough estimate of activity concentrations in the References selected for flora and fauna

Relation of exposures to biota and humans

- What does it mean for humans, if biota receive 10 mGy/h ?
- 2 Examples:
 - 1 Internal dose to a fish => Internal dose to a person eating that fish
 - 2 External exposure to a deer => External exposure to person being at the same place

Link of internal exposure: Fish — Man

The limit for the annual exposure from planned discharges is 1 mS/a

Conclusions

- General consensus on dose rate levels that do cause effects to flora and fauna
 - Limited knowledge on effects on population
 - Relatively little number of species involved
 - Migration
 - Size of affected area
- Estimation of radionuclide concentrations in flora and fauna is possible – uncertainties remain
 - Many radionuclides with gaps
 - Broadening the spectrum of species
- Simple dosimetry provides consistent results some fine tuning is still needed
 - Impact of non-homogeneous distribution
 - Submersion from the cloud and inhalation
 - Background exposure to radon

Conclusions (cont.)

- Link to humans
 - Exposure levels around 10 μ Gy/h do not affect biota
 - However, such exposures restrict the use of environmental resources as water bodies and land for humans
 - Food production
 - Staying on such areas
 - More detailed and systematic considerations are needed
- ⇒For radiological protection of the environment an integrated approach is needed that involves
 - \Rightarrow Protecting of biota
 - \Rightarrow Protecting people
 - \Rightarrow Ensure the use of environmental resources

Thank you very much

