

Contents

NZG

1. Introduction

2. Mathematical background

- 2.1 Airflow modelling
- 2.2 Droplet dispersion
- 2.3 Radiation exposure

3. Model setup and boundary conditions

- 3.1 Model setup
- 3.2 Boundary conditions

4. Simulation results

- 4.1 Release of ^{99m}Tc in the atmosphere4.2 Sensitivity analysis
- 5. Conclusions

1. Introduction

- Field experiments at NINCBS in Pribram
- Explosion of ^{99m}Tc in the atmosphere
- Explosion carried out on a helicopter landing side surrounded by forest
- Tests side is surrounded by forest and hills.
- Measurements include:
- Atmospheric conditions e.g. wind speed, direction temperature etc.
- Droplet specifications, like droplet size and volume activity.
- Surface contamination and subsequent dose rates.:
- Radioactive concentrations in the air.

Test side at NINCBS in Pribram

2. Mathematical background

- Computational Fluid Dynamics (CFD) The calculations are based on the CFD software Fluent[©], in-house algorithms are included to take account of nuclear decay, deposition and dispersion.
- Navier-Stokes equations The atmospheric flow is modelled using conservation equations for mass, momentum and energy.
- Dispersion and deposition of droplets Dispersion and deposition is modelled within an additional conservation equation.
- Pollution modelling

Dispersion of the ^{99m}Tc pollutant is based on atmospheric and thermal flow features.

3. CFD conservation equations

- The CFD computation is based on conservation equations for mass, momentum and energy.
- Turbulent motion is take into account with a k-ε turbulence model.
- Forest patches are considered with an extra sink term.
- A logarithmic boundary model with roughness height is applied to the ground.

CFD conservation equations

$$\begin{split} \rho(\nabla \cdot u_k) &= 0 & \text{Mass conservation equation} \\ \rho\left(\frac{\partial(u_k)}{\partial t} + \nabla \cdot (u_k u_l)\right) &= -\nabla P + \nabla \cdot (\mu_{eff} \nabla u_k) + S_{u,k} \\ \text{Momentum conservation equation} \\ \\ \mu_{eff} &= \mu_l + \mu_t & \text{Turbulent viscosity} \\ \\ S_{u,k} &= -\rho C_d a_l U^2 = -\frac{1}{2} \rho C_n U^2 \\ \text{Forest patches} \\ \\ \frac{\partial \rho E}{\partial t} + \nabla \cdot \rho u_k E = -\nabla u_k P + \nabla \cdot (\Gamma_T \nabla T) \\ \\ \text{Energy conservation equation} \end{split}$$

4. Dispersion modelling of ^{99m}Tc

- The activity from ^{99m}Tc is based on an additional conservation equation.
- Turbulent diffusion is based on the k-ε turbulence model.
- Brownian diffusion, terminal velocity and nuclear decay are considered.
- For each droplet diameter a separate conservation equation is required.
- Evaporation is not included.

$$\frac{\partial C_m}{\partial t} + \nabla \cdot [(u + (v_{s,m}))C_i] = \nabla \cdot ((\Gamma_m) + (D_m)\nabla C_m] + (S_{c,m})$$

$$\frac{\partial C_m}{\partial t} + \nabla \cdot [(u + (v_{s,m}))C_i] = \nabla \cdot ((\Gamma_m) + (D_m)\nabla C_m] + (S_{c,m})$$

$$Droplet conservation equation$$

$$\frac{\Gamma_m}{\Gamma_m} = \mu_{eff} / \rho$$
Turbulent diffusion
$$D = \frac{k_B T C u}{3\pi \mu_i d_p}$$
Brownian diffusion
$$\frac{V_s}{V_s} = \frac{\rho_d g d_d^2}{18 \mu_a}$$
Terminal velocity
$$S_C = -\lambda C$$
Nuclear decay

5. Modelling of droplet deposition

- Deposition is applied as an extra sink term to the elements adjacent to the ground.
- The sink term is a function of the deposition velocity and concentration ^{99m}Tc in the numerical element.
- Only dry deposition is considered.
- Dry deposition considers: gravitational settling, turbulent motion and Brownian diffusion.
- Deposition due to rainfall is not considered, but can be applied.

6. Radiation exposure from ^{99m}Tc

- The dose rate in each element is computed at the end of the time-step and is based on the accumulated droplet deposition.
- The activity at each boundary facet is considered a point source.
- The dose rate is based on the air Kerma rate constant for ^{99m}Tc in air.
- The air Kerma rate constant (Γ_a) is 0.018 μGy⋅m²MBq⁻¹h⁻¹.

Calculation absorbed dose rate

 $\dot{K}_{a,j} = \Gamma_a \sum_{p=0}^{p=P_b} \frac{A_p}{r_{p,j}^2}$

7. Model setup and boundary conditions

- Dimensions CFD model: x=1000m / y=100m / z=950m.
- CFD Model: *Transient simulation, with steady-state BCs.*
- Simulation time: 500s, with a 1s time-step size.
- CFD Mesh: Polyhedral mesh elements.
- Turbulence model:
 k-ε RNG model.
- Temperature:
 Energy calculation.
- Roughness length: y_0 is 0.03 m.
- Resistance coefficient
 forest:

 C_n is 0.1 m⁻¹.

Geometry of the CFD model

8. Initial release of the droplets

- The starting point of the computation is a cylindrical formed cloud containing a uniform concentration of ^{99m}Tc.
- The explosion itself is not computed.
- The geometry of the cloud and its content are based on data provided by the NRPI.
- Possibilities for an explosion model are feasible and need to be discussed in a technical forum.
- The total activity in the cloud is 1,058MBq.

Dia. versus activity in the cloud				
Droplet diameter	Volume			
(m)	activity (%)			
2 [.] 10 ⁻⁵	10.0			
6 [.] 10 ⁻⁶	46.6			
1 [.] 10 ⁻⁶	15.0			
2 [.] 10 ⁻⁷	28.4			

9. Velocity boundary conditions

- Profiles for wind speed, kinetic energy and dissipation are based on a neutral atmospheric boundary layer.
- The wind speed is 4 m/s at 10m above ground.
- The turbulent kinetic energy is 0.27 m²/s².
- The dissipation is inverse linear with the height from the ground.

$$U(y) = u_{ABL}^* \ln\left(\frac{y + y_0}{y_0}\right)$$

Logarithmic velocity profile

$$k(y) = \frac{u_{ABL}^{*2}}{\sqrt{C_{\mu}}}$$
 Turbulent kinetic energy profile

$$\varepsilon(y) = \frac{u_{ABL}^{*3}}{\kappa(y + y_0)}$$
 Turbulent dissipation profile

10. Simulation results

- Simulation process:
 - I. Performed sensitivity simulations, 2. Fine-tune & calibrate simulation setup, 3. Performed final simulation
- Performed simulations include:
 - > 1 final simulation with droplet spectrum
 - > 10 simulations as part of the sensitivity analysis
- Simulations are benchmarked only against test 2 (15th May 2008) from the NRPI

11. Simulated atmospheric flow field

NRG

- Sustainable atmospheric flow
- Spatial variations in the grid resolution effect the sustainability of the flow field.
- Mesh sensitivity analysis was performed.
- Reduced wind speed in the forest patches
- Flow field is sensitive to wind speed, direction and forest settings
- Vortex formation in the wake area behind the forest

Prediction of the flow field

13. ^{99m}Tc in the air and on the ground

- The total deposition of ^{99m}Tc on the ground 500s after the explosion is <u>1.6%</u>.
- After 200s there is no further increase in ^{99m}Tc surface contamination.
- After 150-200s ^{99m}Tc reaches the outer edges of the computational domain.
- After 400s there is no significant concentration of ^{99m}Tc in the air.

1.0E+10 1.0E+09 1.0E+08 Activity (Bq) 1.0E+07 1.0E+06 1.0E+05 1.0E+04 200 400 600 0 Time (s) ^{99m}Tc activity in the air ^{99m}Tc activity on the ground

^{99m}Tc activity in the air and on the ground

NRG 14. ^{99m}Tc in the air and on the ground ^{99m}Tc activity on the ground surface per diameter category **Droplet diameter** Released Percentage Deposition deposition (m) activity (Bq) (Bq) (%) 2·10⁻⁵ / 2·10⁻⁷ 1.06[.]10⁹ $1.65^{-}10^{7}$ 1.6 T. Т 1 Т ١ 1

15. ^{99m}Tc surface contamination

16. ^{99m}Tc in the air and on the ground

^{99m} Tc contamination zones	^{99m} Tc activity on the ground surface per diameter category					
	Droplet diameter (m)	R ₅₀ zone (m)	R ₇₅ zone (m)	R ₉₅ zone (m)		
	2 [.] 10 ⁻⁵ / 2 [.] 10 ⁻⁷	7.4	16.6	42.1		
	2 [.] 10 ⁻⁵	7.2	16.3	41.9		
	6 [.] 10 ⁻⁶	7.8	17.2	42.5		
	1 [.] 10 ⁻⁶	7.8	17.3	43.9		
	2 [.] 10 ⁻⁷	6.1	15.8	46.1		
			\cup			

18

17. ^{99m}Tc dose rates at 1m above ground

Graph with average concentrations as function of time for 4 positions. The location of the 4 positions is shown in the adjacent picture.

19. Results from the sensitivity analysis

Ν	RG

Simulation	Input parameter	Released activity (Bq)	Deposition (Bq)	Percentage deposition (%)	R₀₅ zone (m)
Default model input	Default	1.06 [.] 10 ⁹	9.16 [.] 10 ⁶	0.9	38.4

20. Conclusions

CONCLUSIONS

- CFD simulations give interesting qualitative results
- Effects from atmospheric conditions on the surface contamination are shown.
- CFD simulation results are very sensitive to atmospheric boundary conditions and initial cloud conditions.
- To reproduce the experimental results good climate data at the time of the experiment is required.

FURTHER WORK

- Incorporate a suitable algorithm to simulate the initial stages of the explosion
- Run a simulation for the final blind-test performed by the NRPI
- Other things that are of interest are: evaporation, wet-deposition & solar irradiation, LES calculation, automated topography

