IRSIN INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

TOCATTA status & planed tritium experiments

Faire avancer la sûreté nucléaire

Séverine Le Dizès-Maurel

National Institute of Nuclear Safety (IRSN)

Cadarache, France

Why studying ¹⁴C and ³H? (1)

Carbon 14 and tritium are substantially released in the atmosphere around:

- Nuclear Power Plants (NPP);
- Nuclear Recycling Plants (NRP).

Atmospheric releases

<u>NRP</u>

⁸⁵Kr = 99.97 %

□ 3H	■ 14C	🗖 Other

TOCATTA status & planned tritium experiments

Why studying ¹⁴C and ³H?

> Still significant uncertainties on ¹⁴C and ³H:

- sampling and measurement;
- evolution of the chemical form in the atmosphere, vegetation, soil and groundwater;
- quantification of dry and wet deposition;
- quantification of Organically Bound Tritium (OBT).

The VATO project : VAlidation of the TOCATTA model

- To estimate ¹⁴C and ³H fluxes in a grassland ecosystem (*raygrass sp.*, soil and groundwater in both saturated and unsaturated zones), in relation with:
 - evolution of air concentrations (day versus night);
 - weather conditions;
 - Iand use (grazing, maïze silage and hay).
- > To study ¹⁴C and ³H transfers to cows and cowmilk as a function of

In order to validate the TOCATTA model.

¹⁴C & ³H transfer modelling in TOCATTA (1)

Main characteristics

Types of releases: atmospheric and / or liquid (spray irrigation)

Main environmental media : agricultural systems (soil, plant and animals)

Multiple source term kinetics : normal and accidental modes

Physico-chemical forms of releases : $^{14}CO_2$, HTO

Temporal scales:

- Daily time step
- Duration of simulation: ≥ 1 year(s)

¹⁴C & ³H transfer modelling in TOCATTA (2)

Other characteristics

A dynamic model

- Based on plant biomass growth whose curves are either predefined or derived from experimental data
- Based on the assumption of isotopic equilibrium between the quantity of newly created plant biomass and the surrounding air, at each time step (i.e. 1 day)

Integrated in SYMBIOSE

- Simple model, flexible, limited number of input parameters and compartments to be used in an operational mode
- Model parameterized for various types of agricultural plants, broken down into three groups : annual crops, vegetable crops and pasture grass. Two categories of soils considered by default: sandy soil and clayey soil.
- Conceptual (interaction matrix) and mathematical models (mass balance)
- Dose man calculations through ingestion of contaminated foodstuffs

The soil-plant system: conceptual model (³H)

SOURCE*						
	CANOPY ATMOSPHERE	Surface exchange Wet Input• (1-Captation)	Net primary production	Foliar absorption Wet Input •Translocation		
		SOIL WATER		Root uptake •Translocation		Diffusion Migration
			PLANT ORGANIC DRY MATERIAL		Rad. decay	Litterfall Grazing
				PLANT WATER MATERIAL	Biol. decay Rad. decay	Grazing
				Litterfall Root exudation	REST OF PLANT	Harvest
						SINK

*Tritiated water (HTO) presents in the atmosphere (air or water droplets) or in irrigation water.

Mathematical model

- **7** First order differential equations
- Conservation of mass within each compartment

Stock or concentration of stable or radioactive C within compartment i:

(with $A_i=0 a t=0$)

VATO project: in situ lab

Releases of ¹⁴C and ³H by the reprocessing plant induce greater concentrations than background levels

"Atelier Nord": a well located experimental site, considering the most frequent wind directions

TOCATTA status & planned tritium experiments

VATO project: monitoring system

TOCATTA status & planned tritium experiments

¹⁴C concentration measurements in air, grass and soil

 \succ Great fluctuations of the signal in air and grass due to the wind direction and the operation of the facility

> No fluctuation in soil due to a poorly reactive pool of organic matter.

Why this model under-estimation?

> The model is based on a daily isotopic equilibrium between the quantity of newly created plant biomass and the surrounding air

 In particular, there is no difference whether a release occurs during the day or during the night.

In other words, the model is better adapted for chronic releases than for <u>accidental releases.</u>

> A new model is being built based on the PASIM* model.

*Grassland ecosystem odel simulating the flow of carbon, nitrogen, water and energy at the soil-plantatmosphere interface (Riédo et al., 1998; Vuichard, 1997)

- ➔ collaboration between IRSN-INRA
- Post-doctoral fellowship (C. Aulagnier, 01/2011-)

 \succ It will take into account plant physiology and local meterology.

Conclusion (1)

The new model still needs further adaptations to take into account the acute variations in radionuclide releases and weather fluctuations. An hourly time-step is required:

- to simulate photosynthesis: carbon 14 cycling;
- to simulate water exchange: tritium cycling.

In order to evaluate the concentration of ¹⁴C and ³H (HTO, OBT) in the different compartments of rural ecosystem, from the atmosphere to the groundwater via grassland.

Conclusion/perspectives (2)

Development of a new model (TOCATTA_ χ) for the atmosphere-soil-plant system

Integrates the key physiological processes of PASIM (photosynthesis, growth) at an hourly time-step

>Intermediate level of complexity between TOCATTA and PASIM:

- ✓ Retains the "mechanistic" aspect of PASIM in modelling C cycle,
- ✓ While being simpler and therefore more operational

>Accounts for the intra-day variability of ¹⁴C releases

Replacement of the TOCATTA model by TOCATTA_*χ* in SYMBIOSE ??

Posters & publications

2 posters: "Proceedings ICRER 2011, 19-24 June, Hamilton (Canada)":

- Maro et al.: Modelling and validating ¹⁴C transfer in terrestrial environments in response to ¹⁴C releases
- Le Dizès et al.: Modelling ¹⁴C transfer in terrestrial environments in response to chronic and accidental ¹⁴C releases
- S. Le Dizès, D. Maro, D. Hebert, M.-A. Gonze, C. Aulagnier. TOCATTA: a dynamic transfer model of ¹⁴C from the atmosphere to soil-plant systems.

✓ Accepted to the *J. Env. Radioact.* (Sept 6th, 2011)

C. Aulagnier, S. Le Dizès, D. Maro, D. Hebert, R. lardy, R.Martin, M.-A. Gonze. Modelling chronic and accidental releases of ¹⁴C to the environment : A case study in a grass field near AREVA-NC La Hague.

✓ Submitted to the *J. Env. Radioact.* (Sept. 1st, 2011)

C. Aulagnier, S. Le Dizès, D. Maro, D. Hebert, R. lardy, R.Martin, M.-A. Gonze. New TOCATTA model developments for accidental release scenarios.

✓ To be submitted (end of year 2011)

Agenda

Tritium	2011	2012	2013	2014
Measurements in air, rain water, grass, soil, soil unsaturated zone, and ground water				
Measurements in cow milk				
Model-measures comparison				
Model adjustment and publications				

Planned ³H studies

Probably a collaboration of IRSN with the Canadian Nuclear Safety Commission (CNSC, Ottawa) that will be discussed and validated in November

"Transfer of tritium in a grassland ecosystem": main characteristics:

- A 4-year project

- Comparison of materials and sampling and measurement techniques in vegetation, soil and groundwater

- Study and comparison of mass balance and fluxes of water and tritium in two grassland ecosystems

- Model analysis and comparison

 Other aspects/uncertainties : atmospheric dispersion of the plume, chemical forms of ³H release (HTO/HT) in the atmosphere quantification of wet and dry deposition quantification of OBT

•••

SYMBIOSE: A Modeling and Simulation Platform for Environmental Radiological Risk Assessments (1/2)

- > Purpose: Risk assessment calculations
 - fate and transport of radionuclides in ecosystems;
 - dose to man.
- > Flexible approach to deal with a wide range of situations
 - multiple radioactive releases (atmospheric, fluvial, and/or marine) from nuclear facilities under normal, incidental or accidental conditions;
 - multi-media (atmospheric, terrestrial, freshwater and marine) and interfaces;
 - multiple exposure routes (external, inhalation, ingestion...).

SYMBIOSE: A Modeling and Simulation Platform for Environmental Radiological Risk Assessments (2/2)

≻Calculations

- reference data bank with generic versus site-specific data;
- dynamical (physically-based) and spatially-distributed modeling;
- including daughters (radioactive decay chains);
- specific models to deal with <u>hydrogen</u>, carbon and chlorine.

TOCATTA model

Mathematical model: the plant module (1)

Example : Transfer of tritium from atmosphere to vegetation (organic pool) :

Mathematical model: the plant module (2)

Relative growth rate (d⁻¹)

$$TOBT_{P}^{Npp} = \frac{(1 - f_{P}^{S})}{f_{P}^{S}} \times \underbrace{\lambda_{P}^{Gro}}_{P} \times [H]_{P} \times \frac{p_{HTO} \times [C_{3H}]_{Air} \times DI_{P}}{[H]_{Air}}$$

Hypothesis:

- Daily time-step (current version)
- Isotopic equilibrium between the quantity of newly created plant biomass and the surrounding air, at each time step (i.e. 1 day)
- Logistic growth curves (cereals), exponential (prairie) or linear (leafy vegetables, fruit vegetables, root vegetables), or empirical data, if available
- Isotopic discrimination of tritium when entering vegetation

