

Statistical Performances measures - models comparison

L Patryl^a, D. Galeriu^a ...

 a Commissariat à l'Energie Atomique, DAM, DIF, F-91297 Arpajon (France) b "Horia Hulubei" Institute for Physics & Nuclear Engineering (Romania)

September, 12th 2011

3

イロト イポト イヨト イヨト

OUTLINE

1 Statistical performance measure

2 Simple statistical analysis on wheat experiments

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

OUTLINE

energie atomique - energies alternative

Statistical performance measure

Simple statistical analysis on wheat experiments

\sim		
	_	
	L	۰

3

イロト イヨト イヨト イヨト

Introduction.

In order to compare predictions from a model and observations measurements, several statistical performances measures can be used (U.S. Environmental Protection Agency).

Some of these performance measures are:

- the fractional bias (FB)
- the geometric mean bias (MG);
- the normalized mean square error (NMSE);
- the geometric variance (VG)
- the correlation coefficient (R)
- the fraction of predictions within a factor of two of observations (FAC2)

Introduction.

In order to compare predictions from a model and observations measurements, several statistical performances measures can be used (U.S. Environmental Protection Agency).

Some of these performance measures are:

- the fractional bias (FB)
- the geometric mean bias (MG);
- the normalized mean square error (NMSE);
- the geometric variance (VG)
- the correlation coefficient (R)
- the fraction of predictions within a factor of two of observations (FAC2)

イロト イヨト イヨト イヨト

э

L Patryl^a, D. Galeriu'

Introduction.

In order to compare predictions from a model and observations measurements, several statistical performances measures can be used (U.S. Environmental Protection Agency).

Some of these performance measures are:

- the fractional bias (FB)
- the geometric mean bias (MG);
- the normalized mean square error (NMSE);
- the geometric variance (VG)
- the correlation coefficient (R)
- the fraction of predictions within a factor of two of observations (FAC2)

L Patrol ^a D. Caleriu ^a				S	ant	om	hei	r 1	12tl	1 20	111	1	10	2
		•	< 🗗	•		-2	•		-2	•	- 2	(۴	90	·*

Introduction.

In order to compare predictions from a model and observations measurements, several statistical performances measures can be used (U.S. Environmental Protection Agency).

Some of these performance measures are:

- the fractional bias (FB)
- the geometric mean bias (MG);
- the normalized mean square error (NMSE);
- the geometric variance (VG)
- the correlation coefficient (R)
- the fraction of predictions within a factor of two of observations (FAC2)

4	-	 □^µ 	P	1.5	1	가 돈 /	- E	ΨJQ	
L Patryl ^a , D. Galeriu ^a			Se	pten	nber	, 12 th	2011	4 /	2

Introduction.

In order to compare predictions from a model and observations measurements, several statistical performances measures can be used (U.S. Environmental Protection Agency).

Some of these performance measures are:

- the fractional bias (FB)
- the geometric mean bias (MG);
- the normalized mean square error (NMSE);
- the geometric variance (VG)
- the correlation coefficient (R)

the fraction of predictions within a factor of two of observations (FAC2)

L Patryl^a

, D. Galeriu ^a	September,	12 th	201

・ロト ・四ト ・ヨト ・ヨト

э

Introduction.

In order to compare predictions from a model and observations measurements, several statistical performances measures can be used (U.S. Environmental Protection Agency).

Some of these performance measures are:

- the fractional bias (FB)
- the geometric mean bias (MG);
- the normalized mean square error (NMSE);
- ۰ the geometric variance (VG)
- the correlation coefficient (R)
- the fraction of predictions within a factor of two of observations (FAC2)

			Se	pt	em	be	r, 1	L2th	1 20)11
•	Þ	۰.1	×.	•	æ	Þ		E.	Image: A start of the start	- 3

4 / 22

Introduction.

In order to compare predictions from a model and observations measurements, several statistical performances measures can be used (U.S. Environmental Protection Agency).

Some of these performance measures are:

- the fractional bias (FB)
- the geometric mean bias (MG);
- the normalized mean square error (NMSE);
- the geometric variance (VG)
- the correlation coefficient (R)

the fraction of predictions within a factor of two of observations (FAC2)

A perfect model would have

MG, VG, R, and FAC2=1.0;

FB and NMSE = 0.0.

э

4 / 22

Systematic errors

3

Systematic errors

- 34

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

energie atomique - energies alternative

Systematic and Random errors.

CEA

Random error is due to unpredictable fluctuations We don't have expected value

- Values are scattered about the true value, and tend to have null arithmetic mean when measurement is repeated.
- NMSE and VG are measures of scatter and reflect both systematic and unsystematic (random) errors.

L Patryl ^a , D. Galeriu ^a	9

3

メロト メポト メヨト メヨト

energie atomique - energies alternative

Patryl^e, D. Galeriu^e ...

3

6 / 22

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

- 2

<ロ> (日) (日) (日) (日) (日)

CEA

September, 12 th 2011

イロト イポト イヨト イヨト 二日

aleriu ^a	September, 12 th	2011

A D > A B > A B > A B >

э

CEA

				Se	pte	em	ber	1	L2 th	20)11
¢	Þ	4	ð	۱.	•	2	×.	4	围)		

•	Þ	4	ð	×.	•	3	×.	•	₹.	Þ		2
				Se	pte	em	ber	, 1	2th	12	201	L

- 2

FAC2.

• FAC2 is the most robust measure, because it is not overly influenced by high and low outlier.

$$FAC2 =$$
 fraction of data that satisfy $0.5 \le \frac{C_p}{C_q} \le 2.0$

CEA L Patryl², D. Galeriu² … September, 12th 2011 8 / 22

9 / 22

9 / 22

イロト イヨト イヨト イヨト

Interpretation of Performance measures.

- FB is symmetrical and bounded; values for the fractional bias range between -2.0 (extreme underprediction) to +2.0 (extreme overprediction)
- The fractional bias is a dimensionless number, which is convenient for comparing the results from studies involving different concentration levels
- Values of the FB that are equal to -0.67 are equivalent to underprediction by a factor of two
- Values of the FB that are equal to +0.67 are equivalent to overprediction by a factor of two
- Model predictions with a fractional bias of 0 (zero) are relatively free from bias
- Values of the MG that are equal to +0.5 are equivalent to underprediction by a factor of two
- values of the MG that are equal to +2 are equivalent to overprediction by a factor of two
- Value of NMSE that are equal to 0.5 corresponds to an equivalent factor of two mean bias
- It doesn't differentiate whether the factor of two mean bias is underprediction or overprediction
- Value of VG that are equal to 1.6 corresponds to an equivalent factor of two mean bia
- It doesn't differentiate whether the factor of two mean bias is underprediction or overprediction

$$\frac{\overline{C_p}}{\overline{C_o}} = \frac{1 - 0.5 FB}{1 + 0.5 FB}$$

September, 12th 2011

3

10 / 22

Interpretation of Performance measures.

- FB is symmetrical and bounded; values for the fractional bias range between -2.0 (extreme underprediction) to +2.0 (extreme overprediction)
- The fractional bias is a dimensionless number, which is convenient for comparing the results from studies involving different concentration levels
- Values of the FB that are equal to -0.67 are equivalent to underprediction by a factor of two
- Values of the FB that are equal to +0.67 are equivalent to overprediction by a factor of two
- Model predictions with a fractional bias of 0 (zero) are relatively free from bias
- Values of the MG that are equal to +0.5 are equivalent to underprediction by a factor of two
- values of the MG that are equal to +2 are equivalent to overprediction by a factor of two
- Value of NMSE that are equal to 0.5 corresponds to an equivalent factor of two mean bias
- It doesn't differentiate whether the factor of two mean bias is underprediction or overprediction
- Value of VG that are equal to 1.6 corresponds to an equivalent factor of two mean bia
- It doesn't differentiate whether the factor of two mean bias is underprediction or overprediction

$$\frac{\overline{C_p}}{\overline{C_o}} = \frac{1 - 0.5 FB}{1 + 0.5 FB}$$

э

10 / 22

Interpretation of Performance measures.

- FB is symmetrical and bounded; values for the fractional bias range between -2.0 (extreme underprediction) to +2.0 (extreme overprediction)
- The fractional bias is a dimensionless number, which is convenient for comparing the results from studies involving different concentration levels
- Values of the FB that are equal to -0.67 are equivalent to underprediction by a factor of two
- lacksquare Values of the FB that are equal to +0.67 are equivalent to overprediction by a factor of two
- Model predictions with a fractional bias of 0 (zero) are relatively free from bias
- lacksquare Values of the MG that are equal to ± 0.5 are equivalent to underprediction by a factor of two
- values of the MG that are equal to +2 are equivalent to overprediction by a factor of two
- Value of NMSE that are equal to 0.5 corresponds to an equivalent factor of two mean bias
- It doesn't differentiate whether the factor of two mean bias is underprediction or overprediction
- Value of VG that are equal to 1.6 corresponds to an equivalent factor of two mean bia
- It doesn't differentiate whether the factor of two mean bias is underprediction or overprediction

$$\frac{\overline{C_p}}{\overline{C_o}} = \frac{1 - 0.5 FB}{1 + 0.5 FB}$$

3

10 / 22

Interpretation of Performance measures.

- FB is symmetrical and bounded; values for the fractional bias range between -2.0 (extreme underprediction) to +2.0 (extreme overprediction)
- The fractional bias is a dimensionless number, which is convenient for comparing the results from studies involving different concentration levels
- Values of the FB that are equal to -0.67 are equivalent to underprediction by a factor of two
- Values of the FB that are equal to +0.67 are equivalent to overprediction by a factor of two
- Model predictions with a fractional bias of 0 (zero) are relatively free from bias
- igle Values of the MG that are equal to +0.5 are equivalent to underprediction by a factor of two
- values of the MG that are equal to +2 are equivalent to overprediction by a factor of two
- Value of NMSE that are equal to 0.5 corresponds to an equivalent factor of two mean bias
- It doesn't differentiate whether the factor of two mean bias is underprediction or overprediction
- Value of VG that are equal to 1.6 corresponds to an equivalent factor of two mean bia
- It doesn't differentiate whether the factor of two mean bias is underprediction or overprediction

$$rac{\overline{C_p}}{\overline{C_o}} = rac{1 - 0.5 FB}{1 + 0.5 FB}$$

3

10 / 22

Interpretation of Performance measures.

- FB is symmetrical and bounded; values for the fractional bias range between -2.0 (extreme underprediction) to +2.0 (extreme overprediction)
- The fractional bias is a dimensionless number, which is convenient for comparing the results from studies involving different concentration levels
- Values of the FB that are equal to -0.67 are equivalent to underprediction by a factor of two
- Values of the FB that are equal to +0.67 are equivalent to overprediction by a factor of two
- Model predictions with a fractional bias of 0 (zero) are relatively free from bias
- Values of the MG that are equal to +0.5 are equivalent to underprediction by a factor of two
- values of the MG that are equal to +2 are equivalent to overprediction by a factor of two
- Value of NMSE that are equal to 0.5 corresponds to an equivalent factor of two mean bias
- It doesn't differentiate whether the factor of two mean bias is underprediction or overprediction
- Value of VG that are equal to 1.6 corresponds to an equivalent factor of two mean bias
- It doesn't differentiate whether the factor of two mean bias is underprediction or overprediction

$$\frac{\overline{C_p}}{\overline{C_o}} = \frac{1 - 0.5 FB}{1 + 0.5 FB}$$

3

10 / 22

Interpretation of Performance measures.

- FB is symmetrical and bounded; values for the fractional bias range between -2.0 (extreme underprediction) to +2.0 (extreme overprediction)
- The fractional bias is a dimensionless number, which is convenient for comparing the results from studies involving different concentration levels
- Values of the FB that are equal to -0.67 are equivalent to underprediction by a factor of two
- Values of the FB that are equal to +0.67 are equivalent to overprediction by a factor of two
- Model predictions with a fractional bias of 0 (zero) are relatively free from bias
- Values of the MG that are equal to +0.5 are equivalent to underprediction by a factor of two
- values of the MG that are equal to +2 are equivalent to overprediction by a factor of two
- Value of NMSE that are equal to 0.5 corresponds to an equivalent factor of two mean bias
- It doesn't differentiate whether the factor of two mean bias is underprediction or overprediction
- Value of VG that are equal to 1.6 corresponds to an equivalent factor of two mean bias
- It doesn't differentiate whether the factor of two mean bias is underprediction or overprediction

$$\frac{\langle C_p \rangle}{\langle C_o \rangle} = \frac{1}{MG}$$

3

10 / 22

Interpretation of Performance measures.

- FB is symmetrical and bounded; values for the fractional bias range between -2.0 (extreme underprediction) to +2.0 (extreme overprediction)
- The fractional bias is a dimensionless number, which is convenient for comparing the results from studies involving different concentration levels
- Values of the FB that are equal to -0.67 are equivalent to underprediction by a factor of two
- Values of the FB that are equal to +0.67 are equivalent to overprediction by a factor of two
- Model predictions with a fractional bias of 0 (zero) are relatively free from bias
- Values of the MG that are equal to +0.5 are equivalent to underprediction by a factor of two
- values of the MG that are equal to +2 are equivalent to overprediction by a factor of two
- Value of NMSE that are equal to 0.5 corresponds to an equivalent factor of two mean bias
- It doesn't differentiate whether the factor of two mean bias is underprediction or overprediction
- Value of VG that are equal to 1.6 corresponds to an equivalent factor of two mean bias
- It doesn't differentiate whether the factor of two mean bias is underprediction or overprediction

$$\frac{\langle C_p \rangle}{\langle C_o \rangle} = \frac{1}{MG}$$

3

10 / 22

Interpretation of Performance measures.

- FB is symmetrical and bounded; values for the fractional bias range between -2.0 (extreme underprediction) to +2.0 (extreme overprediction)
- The fractional bias is a dimensionless number, which is convenient for comparing the results from studies involving different concentration levels
- Values of the FB that are equal to -0.67 are equivalent to underprediction by a factor of two
- Values of the FB that are equal to +0.67 are equivalent to overprediction by a factor of two
- Model predictions with a fractional bias of 0 (zero) are relatively free from bias
- Values of the MG that are equal to +0.5 are equivalent to underprediction by a factor of two
- values of the MG that are equal to +2 are equivalent to overprediction by a factor of two
- Value of NMSE that are equal to 0.5 corresponds to an equivalent factor of two mean bias
- It doesn't differentiate whether the factor of two mean bias is underprediction or overprediction
- Value of VG that are equal to 1.6 corresponds to an equivalent factor of two mean bias
- It doesn't differentiate whether the factor of two mean bias is underprediction or overprediction

$$\frac{\overline{C_p}}{\overline{C_o}} = \frac{2 + NMSE \pm \sqrt{(2 + NMSE)^2 - 4}}{2}$$

10 / 22

Interpretation of Performance measures.

- FB is symmetrical and bounded; values for the fractional bias range between -2.0 (extreme underprediction) to +2.0 (extreme overprediction)
- The fractional bias is a dimensionless number, which is convenient for comparing the results from studies involving different concentration levels
- Values of the FB that are equal to -0.67 are equivalent to underprediction by a factor of two
- Values of the FB that are equal to +0.67 are equivalent to overprediction by a factor of two
- Model predictions with a fractional bias of 0 (zero) are relatively free from bias
- Values of the MG that are equal to +0.5 are equivalent to underprediction by a factor of two
- values of the MG that are equal to +2 are equivalent to overprediction by a factor of two
- Value of NMSE that are equal to 0.5 corresponds to an equivalent factor of two mean bias
- It doesn't differentiate whether the factor of two mean bias is underprediction or overprediction
- Value of VG that are equal to 1.6 corresponds to an equivalent factor of two mean bia
- It doesn't differentiate whether the factor of two mean bias is underprediction or overprediction

$$\frac{\overline{C_p}}{\overline{C_o}} = \frac{2 + NMSE \pm \sqrt{(2 + NMSE)^2 - 4}}{2}$$

Interpretation of Performance measures.

- FB is symmetrical and bounded; values for the fractional bias range between -2.0 (extreme underprediction) to +2.0 (extreme overprediction)
- The fractional bias is a dimensionless number, which is convenient for comparing the results from studies involving different concentration levels
- Values of the FB that are equal to -0.67 are equivalent to underprediction by a factor of two
- Values of the FB that are equal to +0.67 are equivalent to overprediction by a factor of two
- Model predictions with a fractional bias of 0 (zero) are relatively free from bias
- Values of the MG that are equal to +0.5 are equivalent to underprediction by a factor of two
- values of the MG that are equal to +2 are equivalent to overprediction by a factor of two
- Value of NMSE that are equal to 0.5 corresponds to an equivalent factor of two mean bias
- It doesn't differentiate whether the factor of two mean bias is underprediction or overprediction
- Value of VG that are equal to 1.6 corresponds to an equivalent factor of two mean bias
 - It doesn't differentiate whether the factor of two mean bias is underprediction or overprediction

$$\frac{\langle C_p \rangle}{\langle C_o \rangle} = exp[\pm \sqrt{lnVG}]$$

3

10 / 22

Interpretation of Performance measures.

- FB is symmetrical and bounded; values for the fractional bias range between -2.0 (extreme underprediction) to +2.0 (extreme overprediction)
- The fractional bias is a dimensionless number, which is convenient for comparing the results from studies involving different concentration levels
- Values of the FB that are equal to -0.67 are equivalent to underprediction by a factor of two
- Values of the FB that are equal to +0.67 are equivalent to overprediction by a factor of two
- Model predictions with a fractional bias of 0 (zero) are relatively free from bias
- Values of the MG that are equal to +0.5 are equivalent to underprediction by a factor of two
- values of the MG that are equal to +2 are equivalent to overprediction by a factor of two
- Value of NMSE that are equal to 0.5 corresponds to an equivalent factor of two mean bias
- It doesn't differentiate whether the factor of two mean bias is underprediction or overprediction
- Value of VG that are equal to 1.6 corresponds to an equivalent factor of two mean bias
- It doesn't differentiate whether the factor of two mean bias is underprediction or overprediction

$$\frac{\langle C_p \rangle}{\langle C_o \rangle} = \exp[\pm \sqrt{\ln VG}]$$

Model acceptance Criteria

How good is good enough ?

- Fraction of prediction within a factor 2 of observation is about 50% or greanter (FAC2 > 0.5)
 -) The mean bias is within $\pm 30\%$ of the mean (|FB| < 0.3~ or ~0.7 < MG < 1.3
- $^{igodoldsymbol{ imes}}$ Random scatter is about a factor of two to three of the mean (NMSE < 1.5 $\,$ or $\,$ VG < 4 $\,$

3

11 / 22

・ロト ・聞 ト ・ ヨト ・ ヨト

How good is good enough ?

- Fraction of prediction within a factor 2 of observation is about 50% or greanter (FAC2 > 0.5)
- The mean bias is within $\pm 30\%$ of the mean (|FB| < 0.3 or 0.7 < MG < 1.3)
 - Random scatter is about a factor of two to three of the mean (NMSE < 1.5~ or ~VG < 4

3

11 / 22

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

How good is good enough ?

- Fraction of prediction within a factor 2 of observation is about 50% or greanter (FAC2 > 0.5)
- The mean bias is within $\pm 30\%$ of the mean (|FB| < 0.3 or 0.7 < MG < 1.3)
- Random scatter is about a factor of two to three of the mean (NMSE < 1.5 or VG < 4)

3

11 / 22

OUTLINE

2 Simple statistical analysis on wheat experiments

	-	٨
C	E/	-

- 2

12 / 22

Difficult to say which model is better

Difficult to say if models make overprediction ou underprediction

Difficult to say which model is better

• Difficult to say if models make overprediction ou underprediction

3

13 / 22

energie atomique - energies alternatives

• 61 experiments

- 3 models (CEA, JAEA, IFIN)
- More than a factor 2 for CEA and JAEA (radom and systematic errors)
- Only about 30% value are within a factor of 2 of observations

Model/Performance (factor 2)	NMSE (0.5)	FB (±2/3)	FAC2	R
CEA	0.7	0.16	0.31	0.858
JAEA	1.13	0.26	0.30	0.818
IFIN	0.42	0.15	0.36	0.912

3

14 / 22

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

energie atomique - energies alternotives

61 experiments

- 3 models (CEA, JAEA, IFIN)
- Some of values equal 0 → without detection threshold or other informations we use only arithmetic scale (FB and NMSE)
- More than a factor 2 for CEA and JAEA (radom and systematic errors)
- Only about 30% value are within a factor of 2 of observations

Model/Performance (factor 2)	NMSE (0.5)	FB (±2/3)	FAC2	R
CEA	0.7	0.16	0.31	0.858
JAEA	1.13	0.26	0.30	0.818
IFIN	0.42	0.15	0.36	0.912

<ロ> (日) (日) (日) (日) (日)

14 / 22

Model/Performance (factor 2)	NMSE (0.5)	FB (±2/3)	FAC2	R
CEA	0.7	0.16	0.31	0.858
JAEA	1.13	0.26	0.30	0.818
IFIN	0.42	0.15	0.36	0.912

イロト イヨト イヨト イヨト

More than a factor 2 for CEA and JAEA (radom and systematic errors)

Only about 30% value are within a factor of 2 of observations

Model/Performance (factor 2)	NMSE (0.5)	FB (±2/3)	FAC2	R
CEA	0.7	0.16	0.31	0.858
JAEA	1.13	0.26	0.30	0.818
IFIN	0.42	0.15	0.36	0.912

- 61 experiments
- 3 models (CEA, JAEA, IFIN)
- Some of values equal 0 →without detection threshold or other informations we use only arithmetic scale (FB and NMSE)
- More than a factor 2 for CEA and JAEA (radom and systematic errors)
- Only about 30% value are within a factor of 2 of observations

Model/Performance (factor 2)	NMSE (0.5)	FB (±2/3)	FAC2	R
CEA	0.7	0.16	0.31	0.858
JAEA	1.13	0.26	0.30	0.818
IFIN	0.42	0.15	0.36	0.912

3

14 / 22

・ロト ・ 理ト ・ ヨト ・ ヨト

All models tend to underestimate activity in leaf (less than a factor of 2)

Surely due to very low values

CE

September, 12th 2011

15 / 22

э

All models tend to underestimate activity in leaf (less than a factor of 2) ۲ Surely due to very low values

٠

September, 12th 2011

15 / 22

э

 ${\ensuremath{\bullet}}$ IFIN and JAEA seems make underprediction OBT at the end of harvest but how much ?

Difficult to say which model is better

energie atomique - energies alternatives

September, 12th 2011 16 / 22

IFIN and JAEA seems make underprediction OBT at the end of harvest but how much ?

16 / 22

energie atomique - energies alternative

14 experiments at the end or harvest

- 3 models (CEA, JAEA, IFIN)
- Use arithmetic and logarithmic scale \rightarrow gives about the same results
- More than a factor 2 for all models (radom and systematic errors)
- All model made underprediction (more than a factor of 2 for JAEA)

Model/Performance (factor 2)	NMSE (0.5)	FB (±2/3)	FAC2	R
CEA	0.7	0.4	0.5	0.41
JAEA	1.8	1.0	0.07	0.86
IFIN	0.8	0.7	0.5	0.66
Model/Performance (factor 2)	VG (1.6)	MG (2.0 or 0.5)	FAC2	R
Model/Performance (factor 2) CEA	VG (1.6) 2.1	MG (2.0 or 0.5) 1.8	FAC2 0.5	R 0.76
Model/Performance (factor 2) CEA JAEA	VG (1.6) 2.1 15.2	MG (2.0 or 0.5) 1.8 4.0	FAC2 0.5 0.07	R 0.76 0.61

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

energie atomique - energies alternotive

14 experiments at the end or harvest

3 models (CEA, JAEA, IFIN)

■ Use arithmetic and logarithmic scale →gives about the same results.

More than a factor 2 for all models (radom and systematic errors)

All model made underprediction (more than a factor of 2 for JAEA)

Model/Performance (factor 2)	NMSE (0.5)	FB (±2/3)	FAC2	R
CEA	0.7	0.4	0.5	0.41
JAEA	1.8	1.0	0.07	0.86
IFIN	0.8	0.7	0.5	0.66
Model/Performance (factor 2)	VG (1.6)	MG (2.0 or 0.5)	FAC2	R
CEA	2.1	1.8	0.5	0.76
JAEA	15.2	4.0	0.07	0.61
IFIN	1.8	1.9	0.5	0.89

<ロ> (日) (日) (日) (日) (日)

energie atomique - energies alternotives

- 14 experiments at the end or harvest
- 3 models (CEA, JAEA, IFIN)
- Use arithmetic and logarithmic scale \rightarrow gives about the same results)
- More than a factor 2 for all models (radom and systematic errors
- All model made underprediction (more than a factor of 2 for JAEA)

Model/Performance (factor 2)	NMSE (0.5)	FB (±2/3)	FAC2	R
CEA	0.7	0.4	0.5	0.41
JAEA	1.8	1.0	0.07	0.86
IFIN	0.8	0.7	0.5	0.66
Model/Performance (factor 2)	VG (1.6)	MG (2.0 or 0.5)	FAC2	R
CEA	2.1	1.8	0.5	0.76
JAEA	15.2	4.0	0.07	0.61
IFIN	1.8	1.9	0.5	0.89

<ロ> (日) (日) (日) (日) (日)

17 / 22

energie atomique - energies attemptives

- 14 experiments at the end or harvest
- 3 models (CEA, JAEA, IFIN)
- ${\small lacel{eq: optimal optima$
- More than a factor 2 for all models (radom and systematic errors)
- All model made underprediction (more than a factor of 2 for JAEA)

Model/Performance (factor 2)	NMSE (0.5)	FB (±2/3)	FAC2	R
CEA	0.7	0.4	0.5	0.41
JAEA	1.8	1.0	0.07	0.86
IFIN	0.8	0.7	0.5	0.66
Model/Performance (factor 2)	VG (1.6)	MG (2.0 or 0.5)	FAC2	R
CEA	2.1	1.8	0.5	0.76
JAEA	15.2	4.0	0.07	0.61
IFIN	1.8	1.9	0.5	0.89

September, 12th 2011

<ロ> (日) (日) (日) (日) (日)

17 / 22

- energie atomique energies alternatives
- 14 experiments at the end or harvest
- 3 models (CEA, JAEA, IFIN)
- Use arithmetic and logarithmic scale \rightarrow gives about the same results)
- More than a factor 2 for all models (radom and systematic errors)
- All model made underprediction (more than a factor of 2 for JAEA)

Model/Performance (factor 2)	NMSE (0.5)	FB (±2/3)	FAC2	R
CEA	0.7	0.4	0.5	0.41
JAEA	1.8	1.0	0.07	0.86
IFIN	0.8	0.7	0.5	0.66
Model/Performance (factor 2)	VG (1.6)	MG (2.0 or 0.5)	FAC2	R
CEA	2.1	1.8	0.5	0.76
JAEA	15.2	4.0	0.07	0.61
IFIN	1.8	1.9	0.5	0.89

3

17 / 22

<ロ> (日) (日) (日) (日) (日)

CEA and IFIN models tend to underestimate activity in leaf (less than a factor of 2), JAEA underestimates about a factor of 3

Surely due to very low values

18 / 22

CE

- CEA and IFIN models tend to underestimate activity in leaf (less than a factor of 2), JAEA underestimates about a factor of 3
- Surely due to very low values

18 / 22

C

 CEA and IFIN models tend to underestimate activity in leaf (less than a factor of 2), JAEA underestimates about a factor of 4

Random scatter is less than a factor of 3 (CEA, IFIN) and 5 (JAEA)

energie atomique - energies alternatives

		-			th	
L Patryl", D. Galeriu"		Se	epter	mber,	12	2011

. .

э

19 / 22

- CEA and IFIN models tend to underestimate activity in leaf (less than a factor of 2), JAEA underestimates about a factor of 4
- Random scatter is less than a factor of 3 (CEA, IFIN) and 5 (JAEA)

energie atomique - energies alternatives

September, 12th 2011

イロト イヨト イヨト イヨト

19 / 22

OUTLINE

energie atomique - energies alternative

Statistical performance measure

Simple statistical analysis on wheat experiments

\sim		
	_	
		-

3

20 / 22

• Statistical analysis can seriously help the models comparison

• Systematic errors :
$$\left(\frac{\overline{C_p}}{\overline{C_o}} = 0.76(JAEA) 0.86(IFIN\&CEA\right)$$

• Systematic errors :
$$\left(\frac{\overline{C_P}}{\overline{C_0}} = 0.3(JAEA) 0.48(IFIN) 0.7(CEA)\right)$$

< E	<i>₽</i> ►		3	Þ	•	Ð,	•	æ
	Se	pte	mb	er,	12	th	2011	

21 / 22

energie atomique - energies alternatives

- Statistical analysis can seriously help the models comparison
- Performance measures have to be used to compare predictions to observations
- In case of wheat all models have systematic errors
- HTO modelling in wheat leaf seems good for the 3 models
- Systematic errors : $\left(\frac{\overline{C_p}}{\overline{C_o}} = 0.76(JAEA) 0.86(IFIN\&CEA\right)$

OBT modelling in wheat grain seems make underprediction for all model

• Systematic errors :
$$\left(\frac{\overline{C_P}}{\overline{C_o}} = 0.3(JAEA) 0.48(IFIN) 0.7(CEA)\right)$$

3

21 / 22

・ロト ・ 理ト ・ ヨト ・ ヨト

- Statistical analysis can seriously help the models comparison
- Performance measures have to be used to compare predictions to observations
- In case of wheat all models have systematic errors
- HTO modelling in wheat leaf seems good for the 3 models
- Systematic errors : $\left(\frac{\overline{C_p}}{\overline{C_o}} = 0.76(JAEA) 0.86(IFIN\&CEA\right)$

OBT modelling in wheat grain seems make underprediction for all model

• Systematic errors :
$$\left(\frac{\overline{C_P}}{\overline{C_0}} = 0.3(JAEA) 0.48(IFIN) 0.7(CEA)\right)$$

<ロ> (日) (日) (日) (日) (日)

- Statistical analysis can seriously help the models comparison
- Performance measures have to be used to compare predictions to observations
- In case of wheat all models have systematic errors
- HTO modelling in wheat leaf seems good for the 3 models
- Systematic errors : $\left(\frac{\overline{C_p}}{\overline{C_o}} = 0.76(JAEA) 0.86(IFIN\&CEA\right)$

OBT modelling in wheat grain seems make underprediction for all model
Systematic errors : (^{Go}/₂ = 0.3(JAEA) 0.48(IFIN) 0.7(CEA))

21 / 22

(日) (四) (王) (王) (王)

- Statistical analysis can seriously help the models comparison
- Performance measures have to be used to compare predictions to observations
- In case of wheat all models have systematic errors
- HTO modelling in wheat leaf seems good for the 3 models
- Systematic errors : $\left(\frac{\overline{C_p}}{\overline{C_o}} = 0.76(JAEA) \ 0.86(IFIN\&CEA)\right)$

• OBT modelling in wheat grain seems make underprediction for all model • Systematic errors : $\left(\frac{\overline{C_p}}{2} - 0.3(14F4) 0.48(1FIN) 0.7(CF4)\right)$

21 / 22
CONCLUSIONS (1/2)

- Statistical analysis can seriously help the models comparison ۰
- Performance measures have to be used to compare predictions to ۰ observations
- In case of wheat all models have systematic errors
- HTO modelling in wheat leaf seems good for the 3 models

• Systematic errors :
$$\left(\frac{\overline{C_p}}{\overline{C_o}} = 0.76(JAEA) 0.86(IFIN\&CEA\right)$$

- OBT modelling in wheat grain seems make underprediction for all model

21 / 22

CONCLUSIONS (1/2)

- Statistical analysis can seriously help the models comparison
- Performance measures have to be used to compare predictions to observations
- In case of wheat all models have systematic errors
- HTO modelling in wheat leaf seems good for the 3 models

• Systematic errors :
$$\left(\frac{\overline{C_p}}{\overline{C_o}} = 0.76(JAEA) \ 0.86(IFIN\&CEA)\right)$$

• OBT modelling in wheat grain seems make underprediction for all model

• Systematic errors :
$$\left(\frac{\overline{C_p}}{\overline{C_o}} = 0.3(JAEA) 0.48(IFIN) 0.7(CEA)\right)$$

CEA

э

21 / 22

イロト イポト イヨト イヨト

CONCLUSIONS (1/2)

ARE MODELS IN ACCEPTANCE CRITERIA

energie atomique - energies alternatives

HTO Leaf				
Test/models	CEA	IFIN	JAEA	
FAC2 > 0.5	no	no	no	
Mean bias within $\pm 30\%$ of the mean ($ FB $ $<$ 0.3 or 0.7 $<$	ok	ok	ok	
MG < 1.3))				
Random scatter (NMSE < 1.5 or VG < 4)	ok	ok	ok	
Acceptance	ok ?	ok ?	ok ?	

OBT Grain				
Test/models	CEA	IFIN	JAEA	
FAC2 > 0.5	ok	ok	no	
Mean bias within $\pm 30\%$ of the mean ($ FB < 0.3$ or $0.7 <$	no	no	no	
MG < 1.3))				
Random scatter (NMSE < 1.5 or VG < 4)	ok	ok	no	
Acceptance	ok ?	ok ?	no	

▲□▶ ▲圖▶ ▲国▶ ▲国≯

- 2