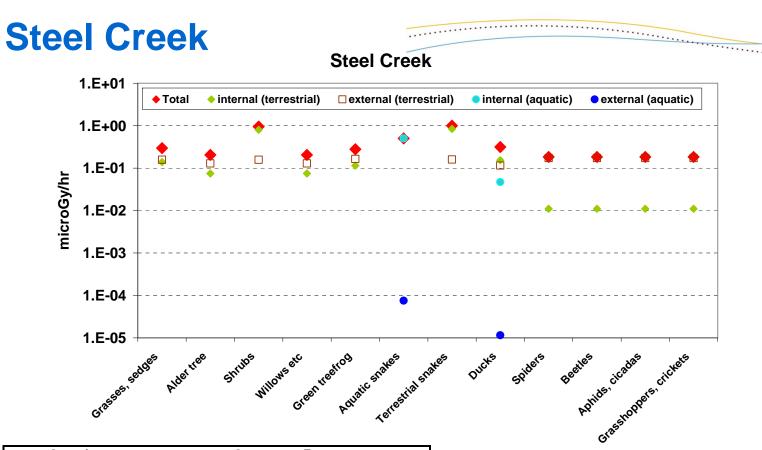


Australian Government

Australian Radiation Protection and Nuclear Safety Agency

Australian Government

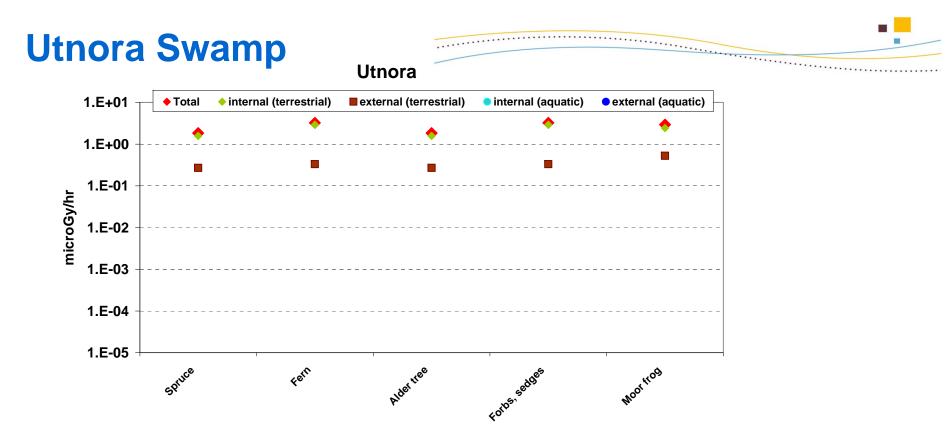
Department of Sustainability, Environment, Water, Population and Communities Supervising Scientist



Summary of doses and approach: Wetland scenario

A Bollhöfer*, C Doering#, B Ryan&

* Environmental Research Institute of the Supervising Scientist (eriss), Darwin, NT, Australia # Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), Yallambie, Vic, Australia & Paulka Radiation and Environment, Darwin, Australia


Supervising Scientist - working to protect the environment from the impacts of uranium mining

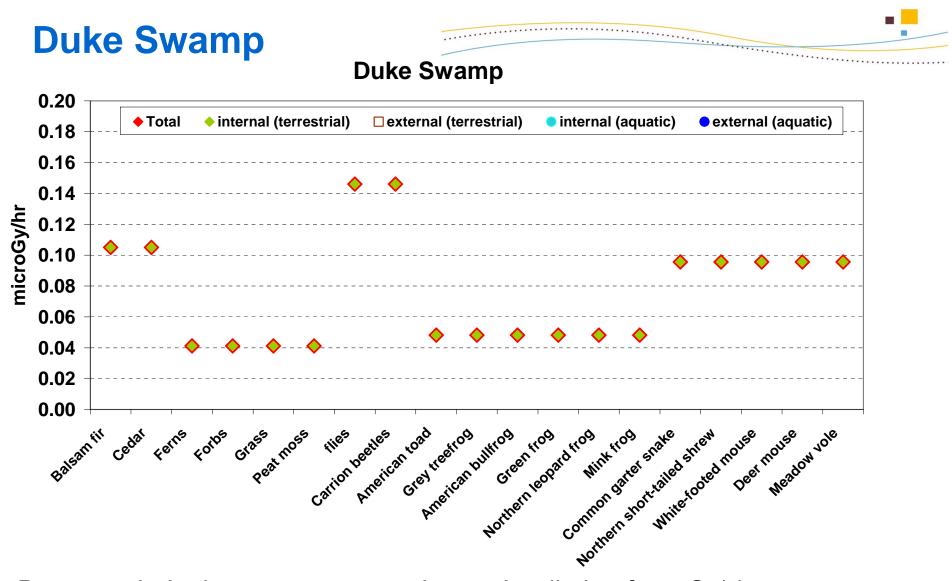
Organism	Occupancy Factors	
	Terrestrial	Aquatic
Grasses, sedges	1	0
Alder tree	1	0
Shrubs	1	0
Willows etc	1	0
Green treefrog	1 in air	0
Aquatic snakes	0	0.5 in water, 0.5 at surface
Terrestrial snakes	1	0
Ducks	0.5 on soil, 0.25 in air	0.25 water surface
Spiders	0.5 on soil, 0.5 in air	0
Beetles	1 on soil	0
Aphids, cicadas	1 in air	0
Grasshoppers, crickets	0.5 on soil, 0.5 in air	0

- ERICA default values (CR & geometry)
 - Grass
 - Tree
 - terrestrial amphibian
 - terrestrial reptile
 - Bird
 - flying insect

Supervising Scientist Division

Organism	Occupancy Factors	
	Terrestrial	Aquatic
Spruce	1	0
Fern	1	0
Alder tree	1	0
Forbs, sedges	1	0
Moor frog	0.66 on soil; 0.34 in soil (hibernation)	0

- ERICA default values (CR & geometry)
 - Grass
 - Tree
 - terrestrial amphibian


Duke Swamp

Approach

- Assumption: specific activity (Bq C-14 per gram carbon) in biota is the same as in air (or top soil, see input data)
- C-14 activity concentration in biota calculated from specific activity in air and carbon content in biota tissue
 - Carbon content from
 - TRS472: grass and fodder, fish (for frogs and toads), average of animal products (for snakes and rodents)

.....

- For trees: On the variation of water content in trees," by James Barkley Pollock of the University of Wisconson. *and* Canadian woods: Their properties and uses. 1981. Mullins, E.J.; McKnight, T.S., editors. Environment Canada.
- For insects: Bertram et al 2008.Extensive natural intraspecific variation in stoichiometric (C:N:P) composition in two terrestrial insect species. J Insect Sci. 2008;8:1-7
- Biota activity concentrations were then put into ERICA to calculate doses

Doses entirely due to exposure to internal radiation from C-14