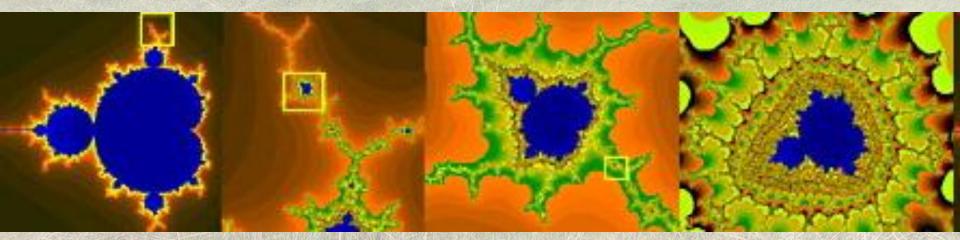


Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas


CONSIDERATIONS ON BACKGROUND SUBTRACTION IN MODELLING:

NORM

Cierno de Investigaciones Energéticas, Medioambientales y Tecnológicas

Fractal behaviour of the natural background

"ALL MODELS ARE WRONG BUT SOME ARE USEFUL"

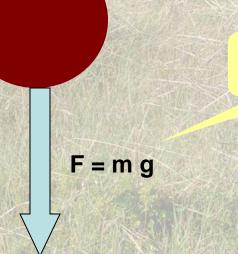
Box, GEP. Science and statistics J. Am. Stat. Assoc. 71(356). 791-799 (1976)

A couple of measurements and a discussion made me reflect:

Should the background in modelled values be considered?

....or should it not?

I have more questions than answers (Désolé)

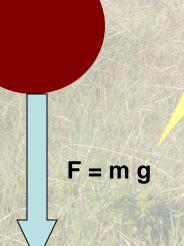

Basic idea: Is background important in my model?

an example: gravity

(an example: gravity)

EMRAS II - 4-7 oct 2011

Juan C. Mora


My model

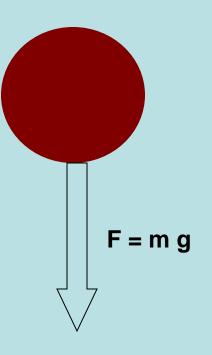
Ciernale Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

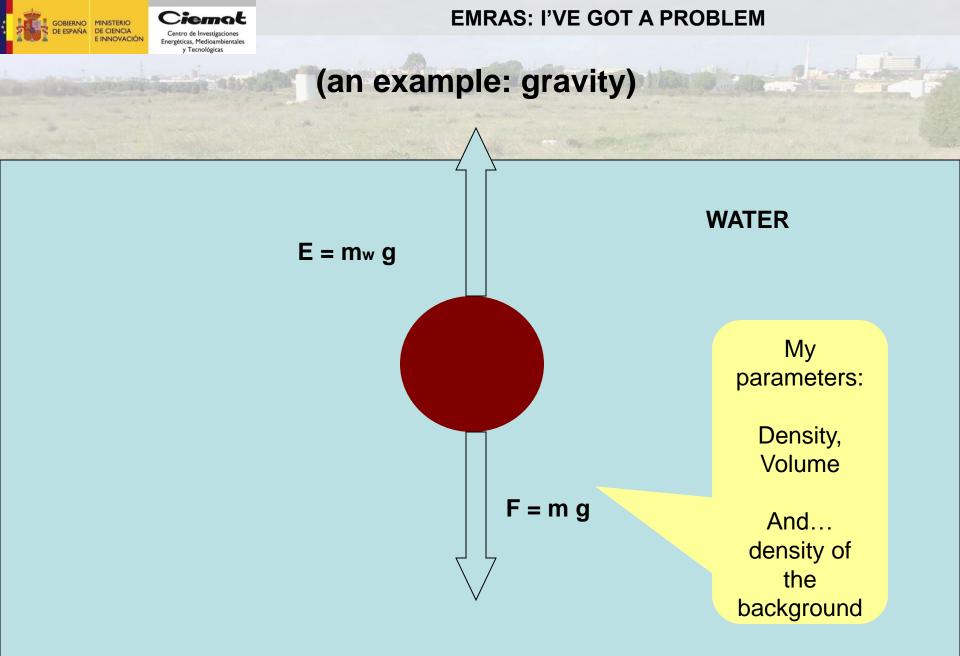
EMRAS: I'VE GOT A PROBLEM

(an example: gravity)

My parameters:

> Mass = Density x Volume




Ciernate Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

EMRAS: I'VE GOT A PROBLEM

(an example: gravity)

$E = \sum_{T} w_{T} \sum_{R} w_{R} \cdot D_{T,R}$

ICRP [103]

Effective dose

D_{T,R}

Averaged absorbed dose in the tissue T due to the radiation R

WR

Radiation weighting factor

Tissue weighting factor

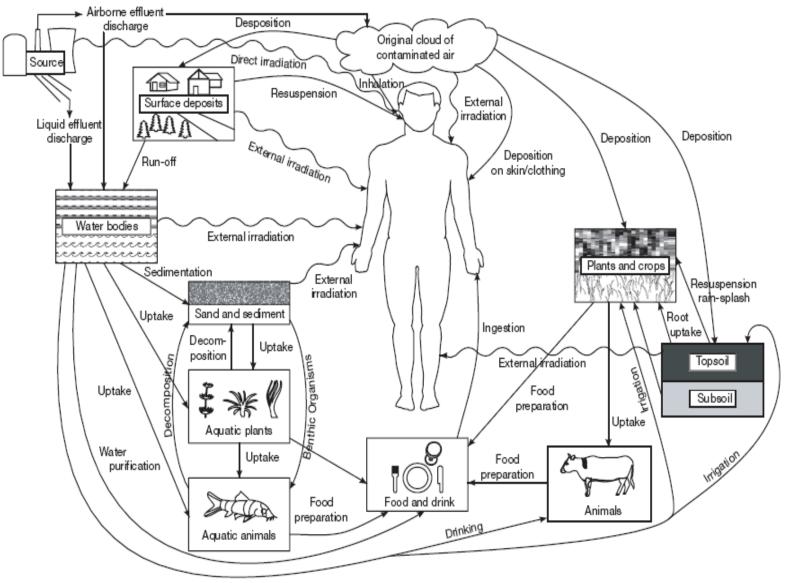
WT

EMRAS II - 4-7 oct 2011

Ciernale Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas NORM

Total effective dose

$E_T + H_p(d) + \sum_{i} e(g)_{j,ing} \cdot I_{j,ing} + \sum_{i} e(g)_{j,inh} \cdot I_{j,inh}$


MAIN LIMITING MAGNITUDE

1 mSv / y \rightarrow public 20 mSv / y \rightarrow workers

IAEA [OLD BSS]

EMRAS II - 4-7 oct 2011

1st NORM problem:

Situation WITH NORM contamination

EMRAS II - 4-7 oct 2011

Ciernate Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas **EMRAS: I'VE GOT A PROBLEM**

1st NORM problem: Situation WITHOUT NORM contamination

What is the result if we retire the NORM?

All the exposure pathways remain

EMRAS II - 4-7 oct 2011

1st NORM problem:

Usually raw data are used for modelling and then the results are compared with a dose limit/constraint that is defined as an increase of the background

Is this process consistent???

2nd NORM problem:

Indoor Radon

Discussion with a colleague (a customer in fact):

- 1. My position: radon must be included in the dose asessments of NORM
- 2. His position: It must be considered apart...

2nd NORM problem:

Indoor Radon

New IAEA BSS:

3.4. Exposure due to natural sources is in general considered an existing exposure situation and is subject to the requirements stated in Section 5. However, the relevant requirements in Section 3 for planned exposure situations apply to:

a)Exposure due to material in any practice specified in para. 3.1 where the activity concentration in the material of any radionuclide in the uranium or thorium decay chains is greater than 1 Bq/g or the activity concentration of 40K is greater than 10 Bq/g;

b)Public exposure delivered by discharges or in the management of radioactive waste arising from a practice involving material as specified in para. 3.4(a);

c) Exposure due to 222Rn and its progeny and 220Rn and its progeny in workplaces in which occupational exposure due to other radionuclides in the uranium or thorium decay chains is controlled as a planned exposure situation;

d) Exposure due to 222Rn and 222Rn progeny where the annual average activity concentration of 222Rn in air in the workplace remains above the reference level established in accordance with para. 5.27 after the fulfilment of the requirement stated in para. 5.28.

Requirement 50: Public exposure due to radon indoors

annual average activity concentration due to 222Rn of 300 Bq m-3 dwellings reference level not exceeding an annual average activity concentration of 222Rn of1000 Bq m-3 in workplaces

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas **EMRAS: I'VE GOT A PROBLEM**

2nd NORM problem:

Indoor Radon

5. EXISTING EXPOSURE SITUATIONS

5.1. The requirements for existing exposure situations in Section 5 apply to:

(c) Exposure due to natural sources, including:

(i) 222Rn, 220Rn and their progeny, in workplaces other than those for which exposure due to other radionuclides in the uranium or thorium decay chains is controlled as a planned exposure situation, in dwellings and in other buildings with high occupancy factors for members of the public;

(ii) Radionuclides of natural origin, regardless of activity concentration, in commodities, including food, feed, drinking water, agricultural fertilizer and soil amendments, and construction material, and existing residues in the environment;
(iii) Materials, other than those stated in para. 5.1(c)(ii), in which the activity concentration of no radionuclide in either the uranium or thorium decay chains exceeds 1 Bq/g or the activity concentration of 40K does not exceed 10 Bq/g;
(iv) Exposure of aircrew and space crew to cosmic radiation.

2nd NORM problem:

Indoor Radon

Radon concentration indoors is considered as an absolute value: background+any other contribution.

The "action levels" or "reference levels" were derived in an effective dose basis:

6-10 mSv y-1

... that is in the order of magnitude of the background

ICRP 103: 200 Bq m-3 // 1000 Bq m-3

while

ICRP 65: 600 Bq m-3 // 1500 Bq m-3

EMRAS II - 4-7 oct 2011

y Tecnológicas

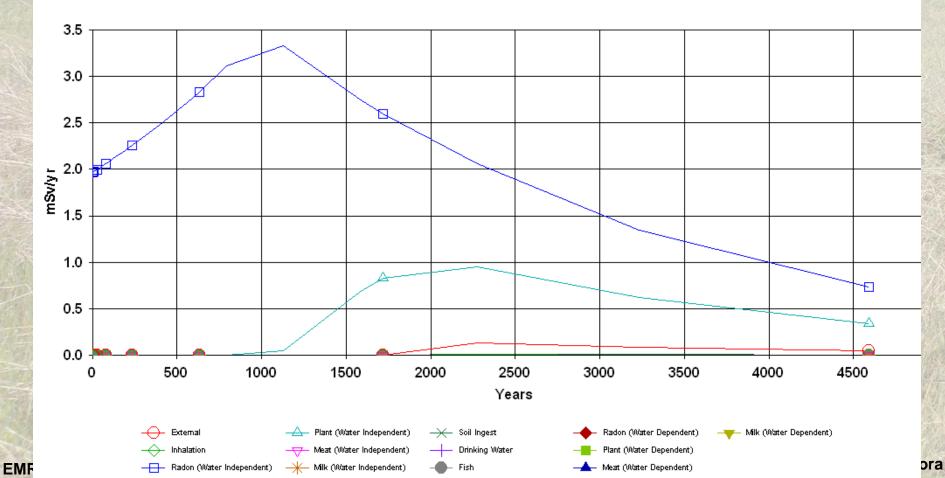
2nd NORM problem:

Indoor Radon

Table 5. Framework for source-related dose constraints and reference levels with examples of constraints for workers and the public from single dominant sources for all exposure situations that can be controlled.

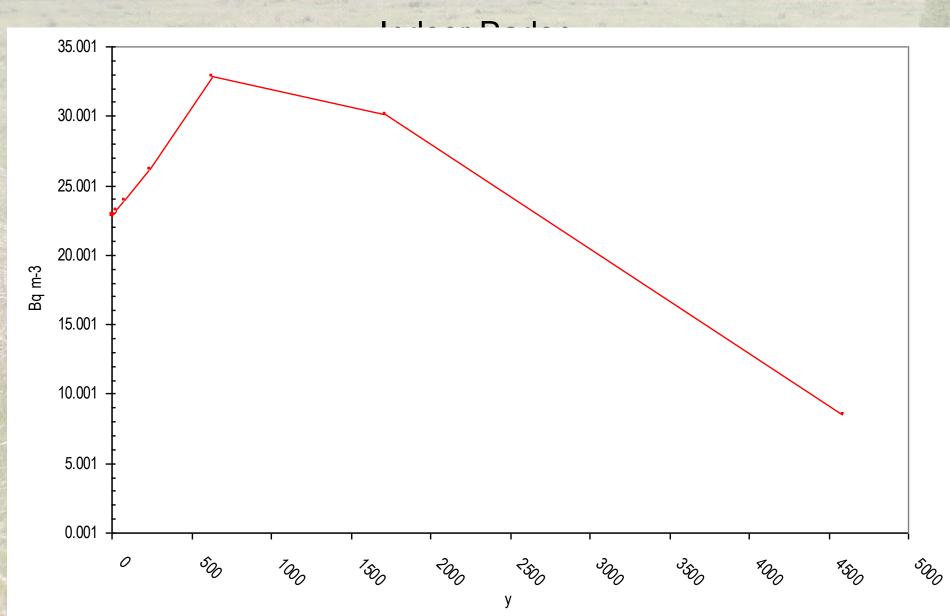
Bands of constraints and reference levels ^a (mSv)	Characteristics of the exposure situation	Radiological protection requirements	Examples
Greater than 1 to 20	Individuals will usually receive benefit from the exposure situation but not necessarily from the exposure itself. Exposures may be controlled at source or, alternatively, by action in the exposure pathways.	Where possible, general information should be made available to enable individuals to reduce their doses. For planned situations, individual assessment of exposure and training should take place.	Constraints set for occupational exposure in planned situations. Constraints set for comforters and carers of patients treated with radiopharmaceuticals. Reference level for the
			highest planned residual dose from radon in dwellings.

iemat


y Tecnológicas

EMRAS: I'VE GOT A PROBLEM

2nd NORM problem:


Indoor Radon Gela case: Indoor dose

DOSE: All Nuclides Summed, Component Pathways

2nd NORM problem:

3rd NORM problem:

Adjustment of parameters

We all adjust the parameters in the models using real measured data in order to reproduce them...without considering the influence of background

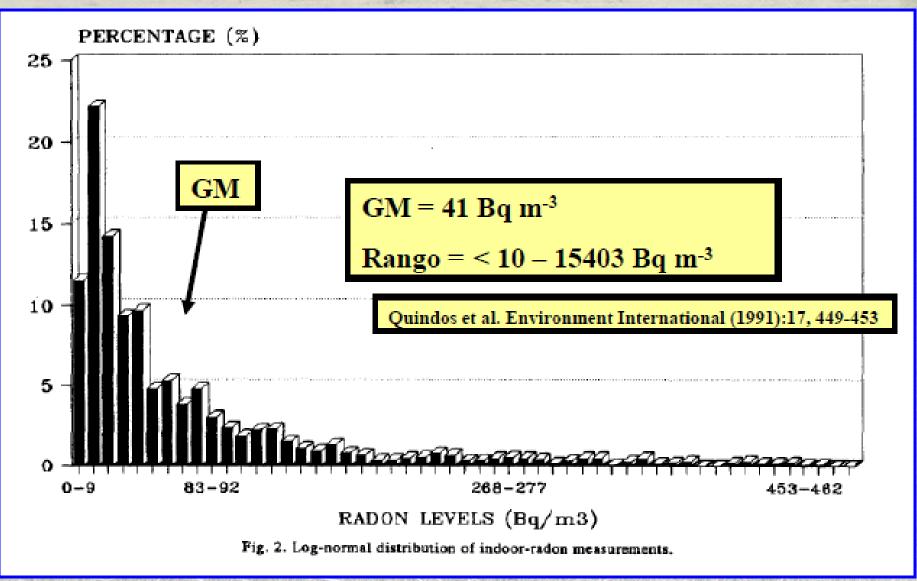
After that, we will treat the results as an increase of the effective dose over the natural background

It seems to me that something is wrong...

Are those the only examples???

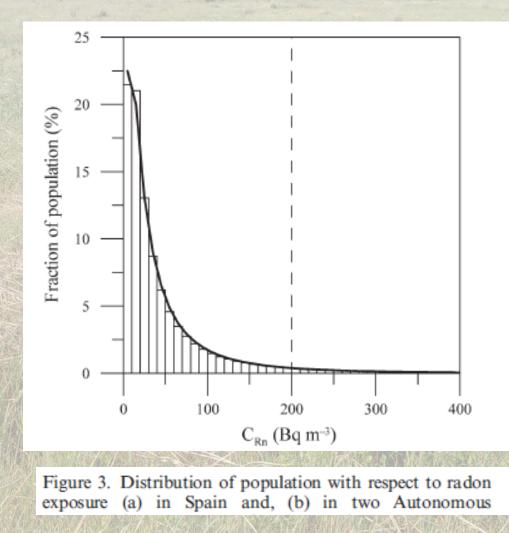
Which pathways may present this problem?:

- •External exposure due to deposits (shielding to nat. back.)
- •Radon (consider it apart?)
- •Foodstuff concentration (due to transfer from soil)?
- Transport of resuspended material?

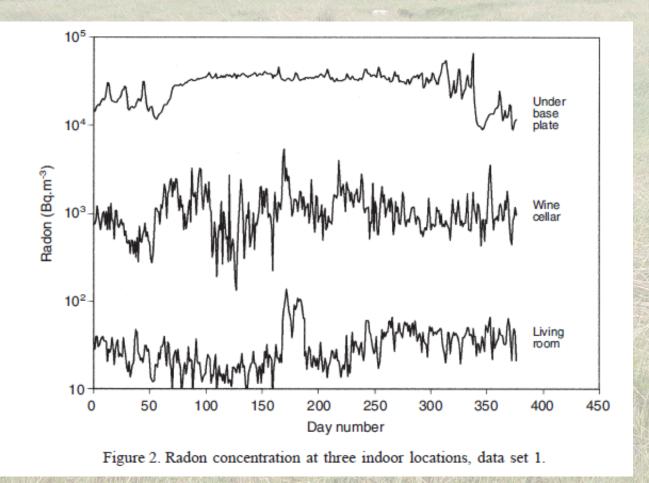

Obviously, the difference is small if background is negligible, but

... is this always the case?

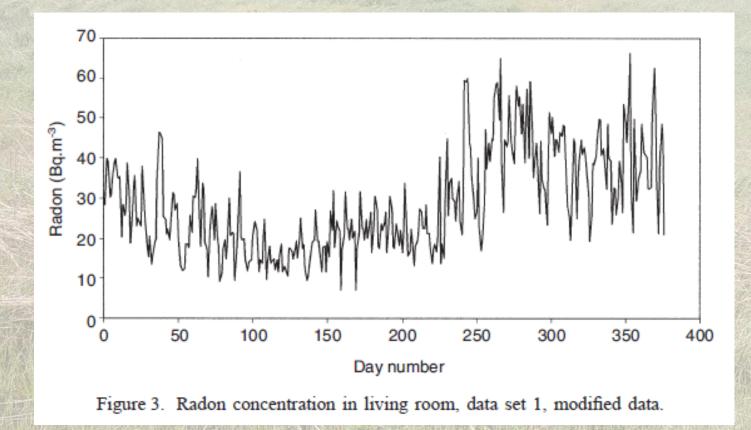
Of course, it is the case with artificial radionuclides



Radon in spanish dwellings

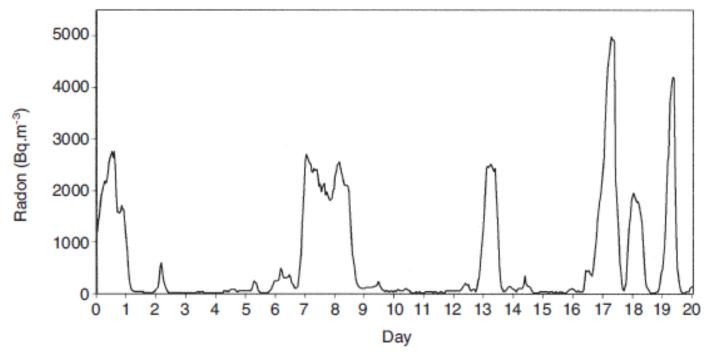

Radon exposure in Spain

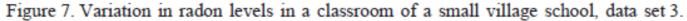
NATURAL IONIZING RADIATION EXPOSURE OF THE SPANISH POPULATION M. Garcı´a-Talavera et. al. Radiation Protection Dosimetry (2007), Vol. 124, No. 4, pp. 353–359


Radon variations indoor

TEMPORAL VARIATION OF RADON LEVELS IN HOUSES AND IMPLICATIONS FOR RADON MEASUREMENT STRATEGIES J. C. H. Miles Radiation Protection Dosimetry Vol. 93, No. 4, pp. 369–375 (2001)

GOBIERNO DE ESPAÑA E ESPAÑA E INNOVACIÓN Y Tecnológicas NORM


Radon variations indoor: living room



TEMPORAL VARIATION OF RADON LEVELS IN HOUSES AND IMPLICATIONS FOR RADON MEASUREMENT STRATEGIES J. C. H. Miles Radiation Protection Dosimetry Vol. 93, No. 4, pp. 369–375 (2001)

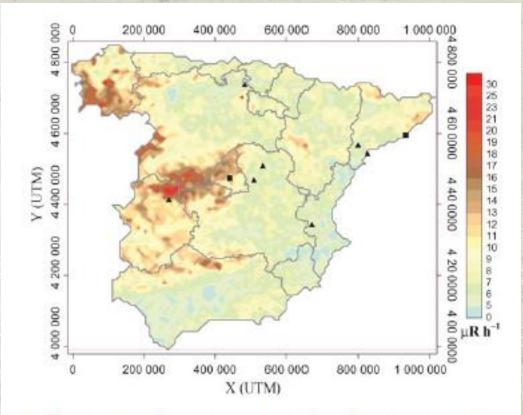
GOBIERNO DE ESPAÑA E ESPAÑA E INNOVACIÓN Y Tecnológicas **NORM**

Radon variations indoor: classroom

TEMPORAL VARIATION OF RADON LEVELS IN HOUSES AND IMPLICATIONS FOR RADON MEASUREMENT STRATEGIES J. C. H. Miles Radiation Protection Dosimetry Vol. 93, No. 4, pp. 369–375 (2001)

Natural "external" background

iemat


Centro de Investigaciones

Energéticas, Medioambientales y Tecnológicas

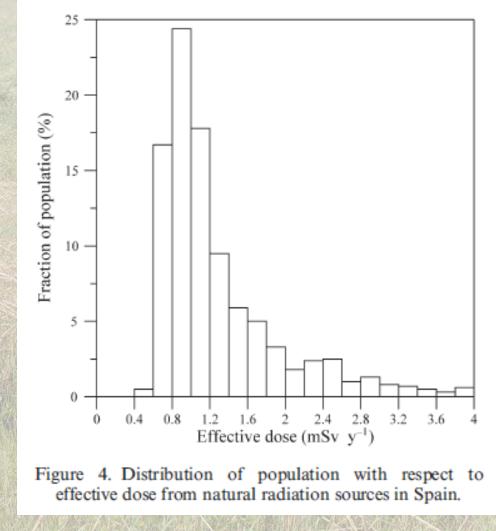
GOBIERNO MINISTERIO DE ESPAÑA

DE CIENCIA

E INNOVACIÓN

1. Exposure Figure to gamma radiation outdoors measured at 1 m above the ground. The gray division lines correspond to Autonomous Communities borders. Symbols show the location of Madrid and Barcelona (■) and the nuclear power plants (A).

NATURAL IONIZING RADIATION EXPOSURE OF THE SPANISH POPULATION M. Garcı'a-Talavera et. al. Radiation Protection Dosimetry (2007), Vol. 124, No. 4, pp. 353-359



Effective dose due to natural background in Spain:

The nationwide average effective dose from natural radiation sources has estimated to be 1.6 mSv y^{-1} and the variation range (0.6, 19.1) mSv y⁻¹. On average, cosmic radiation represents 18%, terrestrial gamma radiation 30%, radon and thoron inhalation 34% and ingestion 18%. These doses are significantly lower than the worldwide average value proposed in UNSCEAR⁽¹⁾ but are in good agreement with values reported for other European countries.

NATURAL IONIZING RADIATION EXPOSURE OF THE SPANISH POPULATION M. Garci a-Talavera et. al. Radiation Protection Dosimetry (2007), Vol. 124, No. 4, pp. 353–359

NATURAL IONIZING RADIATION EXPOSURE OF THE SPANISH POPULATION M. Garcı'a-Talavera et. al. Radiation Protection Dosimetry (2007), Vol. 124, No. 4, pp. 353-359

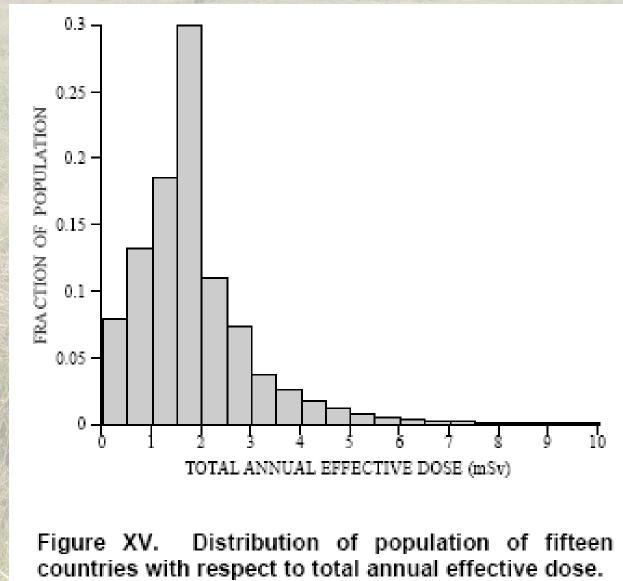
iemat

Centro de Investigaciones

Energéticas, Medioambientales y Tecnológicas

GOBIERNO MINISTERIO DE CIENCIA

E INNOVACIÓN


E ESPAÑA

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

NORM

Effective dose due to natural background worldwide:

Natural radioactivity in foodstuff:

UNSCEAR 2000

Concentrations of naturally occurring radionuclides in foods vary widely because of the differing background levels, climate, and agricultural conditions that prevail.

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

NORM

Table 15

Concentrations of uranium and thorium series radionuclides in foods and drinking water

Region /				Concenti	ation (mBq kg	(mBq kg ⁻¹)					
country	^{238}U	²³⁰ Th	226Ra	²¹⁰ Pb	210Po	²³² Th	228Ra	²²⁸ Th	^{235}U	Ref.	
				Grain p	products						
North America United States	3-23	0.9-10	7-100	33-81		0.1-2.8			0.1-1.3	[F3,M16]	
Asia China India Japan	9.8 7.4-67 1.2		17 14	34	42 15-120	13 1.2	38		0.5	[Z1] [D6, K6] [S22]	
Europe Germany Poland Romania U.K.	20-400 4.7-11 6.1-85 6.2-35	1.4-17	20-2 900 80-110 30-90 0.7-5 200	40-4 000 110-160 49-59 56-120	37-1 900 90-140 20-360 27-260	2.0-21 1.6-33 12		180-2300		[B3, G5] [P3, P7] [B20,R20] [B2]	
Reference value	20	10	80	50 (100)	60 (100)	3	60	3	1		
Leafy vegetables											
North America United States	24	20	56	41		18			1.2	[F3,M16]	
Asia China India	16 61-72		75	360	430 320	23	220		0.7	[Z1] [D6, K6]	

UNSCEAR 2000

EMRAS II - 4-7 oct 2011

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

NORM

Table 15

Concentrations of uranium and thorium series radionuclides in foods and drinking water

	Concentration (mBq kg ⁻¹)							1		
Region / country	^{238}U	²³⁰ Th	²²⁶ Ra	²¹⁰ Pb	210Po	232Th	²²⁸ Ra	²²⁸ Th	^{235}U	Ref.
	Root vegetables and fruits									
North America United States	0.9-7.7	0.2-1.1	7-47	8-150		0.08-1.4			0.1	[F3,M16]
Asia China India Japan	13 0.4-77 26		63 11	27	29 16-140	4.7 2.3	110		0.6	[Z1] [D6, K6] [S22]
Europe Germany Italy Poland Romania U.K.	10-2 900 0.9-10 6-120 6	0.7-7.5	5-9 400 14-25 11-215 9-190 9.0-41	20-4 900 24-93 19-44 18-76	22-5 200 28-210 12-140	0.7-7.1 0.4-2.1		22		[B3, G5,M18] [D9] [P3, P7] [B20,R20] [B2]
Reference value	3	0.5	30	30 (25)	40 (30)	0.5	20	0.5	0.1	

Natural radioactivity in foodstuff:

Table 2. Comparison of the average activity concentrations of ^{232}Th , ^{226}Ra , and ^{40}K in vegetables determined in the present study and from different studies

References		²³² Th	²²⁶ Ra	^{40}K	²¹⁰ Po		
		(Bq <i>kg</i> ⁻¹)	(Bq <i>kg</i> ⁻¹)	(Bq <i>kg</i> ⁻¹)	(Bq <i>kg</i> ⁻¹)		
UNSCEAR (2000) (Leaf	y products-fresh weight)	15×10 ⁻³	5×10 ⁻²	_	10×10 ⁻		
Reference values							
UNSCEAR (2000) (Root values	vegetables and fruits fresh weight) Reference	5×10 ⁻⁴	3×10 ⁻²	—	4×10 ⁻²		
Yen-Chuan Kuo et al. (1	997) (fresh weight)	_	3×10 ⁻²	_	_		
Badran et al. (2003) (fr	esh weight)	_	_	106.3	_		
[8] and [9] (dry weight)		17.38	10.14	4374.88	3.11		
This study (dry weight)		10.17	27.74	1497.88	14.99		
	Radiation Measurements Volume 42, Issue 2, February 2007, Pages 263-270 doi:10.1016/j.radmeas.2006.12.001 How to Cite or Link Using DOI Permissions & Reprints						
	Radioactivity in soils and various foodstuffs from the Gediz River Basin of Turkey						
I – 4-7 oct 2011	M. Bolcaª, 📥 📥 🧮, M.M. Saç ^b , B. Çokuysal ^a , T. Kara	lı ^b , E. Ekdal ^b					

Natural radioactivity in soil:

Median worldwide values: K40 = 400, U238 = 35, and Th232 = 30 Bq kg-1

Population weighted values: K40 = 420, U238 = 33, and Th232 = 45 Bq kg-1

Ciemate Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Natural radioactivity in soil:

Table 5

Natural radionuclide content in soil

Data not referenced are from UNSCEAR Survey of Natural Radiation Exposures

	Denter	Concentration in soil (Bq kg ⁻¹)									
Region / country	Population in 1996		⁴⁰ K	2:	[™] U	²²⁶ Ra		²³² Th			
	(10%)	Mean	Range	Mean	Range	Mean	Range	Mean	Range		
Africa Algeria Egypt	28.78 63.27	370 320	66-1 150 29-650	30 37	2-110 6-120	50 17	5-180 5-64	25 18	2-140 2-96		
North America Costa Rica United States [M7]	3.50 269.4	140 370	6-380 100-700	46 35	11-130 4-140	46 40	11-130 8-160	11 35	1-42 4-130		
South America Argentina	35.22	650	540-750								
East Asia Bangladesh China [P16, Z5] – Hong Kong SAR [W12] India Japan [M5] Kazakstan Korea, Rep. of Malaysia Thailand	120.1 1232 6.19 944.6 125.4 16.82 45.31 20.58 58.70	350 440 530 400 310 300 670 310 230	130-610 9-1 800 80-1 100 38-760 15-990 100-1 200 17-1 500 170-430 7-712	33 84 29 29 37 66 114	2-690 25-130 7-81 2-59 12-120 49-86 3-370	34 32 59 29 33 35 67 48	21-43 2-440 20-110 7-81 6-98 12-120 38-94 11-78	41 95 64 28 60 82 51	1-360 16-200 14-160 2-88 10-220 63-110 7-120		
West Asia Armenia Iran (Islamic Rep. of) Syrian Arab Republic	3.64 69.98 14.57	360 640 270	310-420 250-980 87-780	46 23	20-78 10-64	51 28 20	32-77 8-55 13-32	30 22 20	29-60 5-42 10-32		

Ciemat Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Natural radioactivity in soil:

	Denvilation	Concentration in soil (Bq kg ⁻¹)							
Region / country	Population in 1996		49K 228U 226Ra		Ra	²⁵² Th			
	(10%)	Mean	Range	Mean	Range	Mean	Range	Mean	Range
North Europe Denmark [N5] Estonia Lithuania Norway Sweden	5.24 1.47 3.73 4.35 8.82	460 510 600 850 780	240-610 140-1 120 350-850 560-1 150	16 50	3-30	17 35 50 42	9-29 6-310 12-170	19 27 25 45 42	8-30 5-59 9-46 14-94
West Europe Belgium Germany Ireland [M6] Luxembourg Netherlands [K2] Switzerland United Kingdom [B2]	10.16 81.92 3.55 0.41 15.58 7.22 58.14	380 350 620 370	70-900 40-1 340 40-800 80-1 800 120-730 40-1 000 0-3 200	37 40	11-330 8-120 5-53 10-150 2-330	26 60 35 23 40 37	5-50 5-200 10-200 6-52 6-63 10-900	27 26 50 25	5-50 7-134 3-60 7-70 8-77 4-70 1-180
East Europe Bulgaria Hungary Poland [J7] Romania [I12] Russian Federation Slovakia	8.47 10.05 38.60 22.66 148.1 5.35	400 370 410 490 520 520	40-800 79-570 110-970 250-1100 100-1400 200-1380	40 29 26 32 19 32	8-190 12-66 5-120 8-60 0-67 15-130	45 33 26 32 27 32	12-210 14-76 5-120 8-60 1-76 12-120	30 28 21 38 30 38	7-160 12-45 4-77 11-75 2-79 12-80
South Europe Albania Croatia Cyprus Greece Portugal Slovenia Spain	3.40 4.50 0.76 10.49 9.81 1.92 39.67	360 490 140 360 840 370 470	15-1150 140-710 0-670 12-1570 220-1230 15-1410 25-1650	23 110 25 49	6-96 83-180 1-240 26-82	54 17 25 44 41 32	21-77 0-120 1-240 8-65 2-210 6-250	24 45 21 51 35 33	4-160 12-65 1-190 22-100 2-90 2-210
Median	·	400	140-850	35	16-110	35	17-60	30	11-64
Population-weighted average		420		33		32		45 JI	ian c. m

EMRAS II - 4-7 oct 2011

Natural radioactivity in soil:

Table 8

y Tecnológicas

Outdoor absorbed dose rates in air inferred from concentrations of radionuclides in soil compared with direct measurements

<u> </u>	Absorbed dose rate in air (nGy h ⁻¹)							
Country	From soil concentrations	From direct measurements	Ratio soil/measurements					
Luxembourg	72	49	1.5					
Ireland	58	42	1.4					
Sweden	77	56	1.4					
India	69	56	1.2					
China (Hong Kong SAR)	107	87	1.2					
Norway	86	73	1.2					
United States	55	47	1.2					
Switzerland	49	45	1.1					
Kazakstan	65	63	1.0					
Belgium	44	43	1.0					
Portugal	86	84	1.0					
Malaysia	93	92	1.0					
Egypt	32	32	1.0					
Slovenia	56	56	1.0					
Romania	58	59	1.0					
China	58	62	0.9					
Poland	42	45	0.9					
Estonia	54	59	0.9					
Slovakia	60	67	0.9					
Japan	45	53	0.8					
Lithuania	48	58	0.8					
Thailand	62	77	0.8					
Russian Federation	52	65	0.8					
Bulgaria	56	70	0.8					
Hungary	48	61	0.8					
Algeria	54	70	0.8					
Iran (Islamic Rep. of)	53	71	0.7					
Denmark	39	52	0.7					
Spain	54	76	0.7					
Greece	39	56	0.7					
Albania	40	71	0.6					
Syrian Arab Republic	33	59	0.6					

Ciemate Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Natural radioactivity in soil:

Table 11

Areas of high natural radiation background

1		· · · · · · · · · · · · · · · · · · ·							
	Country	Area	Characteristics of area	Approximate population	Absorbed dose rate in air * (nGy h ¹)	Ref.			
	Brazil	Guarapari	Monazite sands; coastal areas	73 000	90-170 (streets) 90-90 000 (beaches)	[P4, V5]			
12		Mineas Gerais and Goias Pocos de Caldas Araxá	Volcanic intrusives	350	110-1 300 340 average 2 800 average	[A17, P4] [V5]			
200					2 800 average	[vj]			
	China	Yangjiang Quangdong	Monazite particles	80 000	370 average	[W14]			
	Egypt	Nile delta	Monazite sands		20-400	[E3]			
	France	Central region Southwest	Granitic, schistous, sandstone area Uranium minerals	7 000 000	20-400 10-10 000	[J3] [D10]			
現代	India	Kerala and Madras	Monazite sands, coastal areas	100 000	200-4 000	[S19, S20]			
五日の		Ganges delta	200 km long, 0.5 km wide		1 800 average 260-440	[M13]			
	Iran (Islamic Rep. of)	Ramsar Mahallat	Spring waters	2 000	70-17 000 800-4 000	[S21] [S58]			
	Italy	Lazio Campania Orvieto town South Toscana	Voleanie soil	5 100 000 5 600 000 21 000 ~100 000	180 average 200 average 560 average 150-200	[C12] [C12] [C20] [B21]			
and and	Niue Island	Pacific	Volcanic soil	4 500	1 100 maximum	[M14]			
	Switzerland	Tessin, Alps, Jura	Gneiss, verucano, ²²⁶ Ra in karst soils	300 000	100-200	[\$51]			

Possible solutions:

1.- Obtain and Substract the background measurements...even better if data and background are distributions

2.- Model the situation without considering the background, after model the situation without considering the contaminated material and finally substract both results.

Ciennole Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Thank you for your attention