Review on HTO washout

IFIN-HH (D Galeriu, A Melintescu) NIMH (D Attanasov) CEA (L Patryl, P Guetat)

Sommaire

- 2 Scavenging of HTO
- 3 Washout rate and washout ratio
- Rain characteristics 4

Models 5

Conclusions 6

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Sommaire

- Scavenging of HTO
- 3 Washout rate and washout ratio

4 Rain characteristics

5 Models

6 Conclusions

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

- To calculate HTO transfer from atmosphere to soil, dry and wet deposition should be calculated;
- Dry deposition
 - HT velocity to the soil surface is about 4.10⁻⁵- 4.10⁻³ m.s⁻¹
 - HTO velocity to the soil surface is about 10⁻³- 10⁻² m.s⁻
 - depends of soil composition, soil humidity, landcover...
 - exchange velocity follow the Fick law;
 - [Foe88b, Foe88a, Gar80, OSB88, PCC⁺88, TWB88]
- Wet deposition during rain
 - HT solubility is very weak → deposition negligible
 - HTO solubility is important → HTO is exchanged with H₂O in the rain drop
 - to estimate HTO wet deposition, we have to calculate the specific activity of rain water

- To calculate HTO transfer from atmosphere to soil, dry and wet deposition should be calculated;
- Dry deposition
 - HT velocity to the soil surface is about 4.10^{-5} 4.10^{-3} m.s⁻¹
 - HTO velocity to the soil surface is about 10⁻³- 10⁻² m.
 - depends of soil composition, soil humidity, landcover...
 - exchange velocity follow the Fick law;
 - [Foe88b, Foe88a, Gar80, OSB88, PCC⁺88, TWB88]
- Wet deposition during rain
 - HT solubility is very weak → deposition negligible
 - HTO solubility is important \rightarrow HTO is exchanged with H₂O in the rain drop
 - to estimate HTO wet deposition, we have to calculate the specific activity of rain water

- To calculate HTO transfer from atmosphere to soil, dry and wet deposition should be calculated;
- Dry deposition
 - HT velocity to the soil surface is about 4.10^{-5} 4.10^{-3} m.s⁻¹
 - HTO velocity to the soil surface is about 10^{-3} 10^{-2} m.s⁻¹
 - depends of soil composition, soil humidity, landcover...
 - exchange velocity follow the Fick law;
 - [Foe88b, Foe88a, Gar80, OSB88, PCC⁺88, TWB88]
- Wet deposition during rain
 - HT solubility is very weak → deposition negligible
 - HTO solubility is important \rightarrow HTO is exchanged with H₂O in the rain drop
 - to estimate HTO wet deposition, we have to calculate the specific activity of rain water

- To calculate HTO transfer from atmosphere to soil, dry and wet deposition should be calculated;
- Dry deposition
 - HT velocity to the soil surface is about 4.10^{-5} 4.10^{-3} m.s⁻¹
 - HTO velocity to the soil surface is about 10^{-3} 10^{-2} m.s⁻¹
 - depends of soil composition, soil humidity, landcover...
 - exchange velocity follow the Fick law;
 - [Foe88b, Foe88a, Gar80, OSB88, PCC⁺88, TWB88]
- Wet deposition during rair
 - HT solubility is very weak → deposition negligible
 - $\bullet~$ HTO solubility is important \rightarrow HTO is exchanged with H_2O in the rain drop
 - to estimate HTO wet deposition, we have to calculate the specific activity of rain water

- To calculate HTO transfer from atmosphere to soil, dry and wet deposition should be calculated;
- Dry deposition
 - HT velocity to the soil surface is about 4.10^{-5} 4.10^{-3} m.s⁻¹
 - HTO velocity to the soil surface is about 10^{-3} 10^{-2} m.s⁻¹
 - depends of soil composition, soil humidity, landcover...
 - exchange velocity follow the Fick law;
 - [Foe88b, Foe88a, Gar80, OSB88, PCC⁺88, TWB88]
- Wet deposition during rain
 - HT solubility is very weak \rightarrow deposition negligible
 - HTO solubility is important \rightarrow HTO is exchanged with H₂O in the rain drop
 - to estimate HTO wet deposition, we have to calculate the specific activity of rain water

- To calculate HTO transfer from atmosphere to soil, dry and wet deposition should be calculated;
- Dry deposition
 - HT velocity to the soil surface is about 4.10^{-5} 4.10^{-3} m.s⁻¹
 - HTO velocity to the soil surface is about 10^{-3} 10^{-2} m.s⁻¹
 - depends of soil composition, soil humidity, landcover...
 - exchange velocity follow the Fick law;
 - [Foe88b, Foe88a, Gar80, OSB88, PCC⁺88, TWB88]
- Wet deposition during rain
 - HT solubility is very weak \rightarrow deposition negligible
 - $\bullet~$ HTO solubility is important \rightarrow HTO is exchanged with H_2O in the rain drop
 - to estimate HTO wet deposition, we have to calculate the specific activity
 of rain water

- To calculate HTO transfer from atmosphere to soil, dry and wet deposition should be calculated;
- Dry deposition
 - HT velocity to the soil surface is about 4.10^{-5} 4.10^{-3} m.s⁻¹
 - HTO velocity to the soil surface is about 10^{-3} 10^{-2} m.s⁻¹
 - depends of soil composition, soil humidity, landcover...
 - exchange velocity follow the Fick law;
 - [Foe88b, Foe88a, Gar80, OSB88, PCC⁺88, TWB88]
- Wet deposition during rain
 - HT solubility is very weak \rightarrow deposition negligible
 - HTO solubility is important \rightarrow HTO is exchanged with H_2O in the rain drop
 - to estimate HTO wet deposition, we have to calculate the specific activity of rain water

- To calculate HTO transfer from atmosphere to soil, dry and wet deposition should be calculated;
- Dry deposition
 - HT velocity to the soil surface is about 4.10^{-5} 4.10^{-3} m.s⁻¹
 - HTO velocity to the soil surface is about 10^{-3} 10^{-2} m.s⁻¹
 - depends of soil composition, soil humidity, landcover...
 - exchange velocity follow the Fick law;
 - [Foe88b, Foe88a, Gar80, OSB88, PCC⁺88, TWB88]
- Wet deposition during rain
 - HT solubility is very weak \rightarrow deposition negligible
 - $\bullet~$ HTO solubility is important \rightarrow HTO is exchanged with H_2O in the rain drop
 - to estimate HTO wet deposition, we have to calculate the specific activity of rain water

Exchange of tritiated water vapour between a falling rain drop follow the steps :

1 HTO molecules migrate from the atmosphere to the surface of drop,

HTO molecule pass through the liquid-vapour interface,

3 HTO molecule migrate into the drop

Exchange of tritiated water vapour between a falling rain drop follow the steps :

- HTO molecules migrate from the atmosphere to the surface of drop,
- ITO molecule pass through the liquid-vapour interface,
 - 3 HTO molecule migrate into the drop

Exchange of tritiated water vapour between a falling rain drop follow the steps :

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- HTO molecules migrate from the atmosphere to the surface of drop,
- ITO molecule pass through the liquid-vapour interface,
- ITO molecule migrate into the drop

Main knowledge.

Total solubility is inadequat for HTO;

- HTO exchange between atmosphere and drop is reversible;
- Under the plume, desorbtion can be possible;
- but never in equilibrium because the raindrop velocity is high.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

[CE64, DWW78, Hal72]

Main knowledge.

- Total solubility is inadequat for HTO;
- HTO exchange between atmosphere and drop is reversible;
- Under the plume, desorbtion can be possible;
- but never in equilibrium because the raindrop velocity is high.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

[CE64, DWW78, Hal72]

Main knowledge.

- Total solubility is inadequat for HTO;
- HTO exchange between atmosphere and drop is reversible;
- Under the plume, desorbtion can be possible;
- but never in equilibrium because the raindrop velocity is high.

[CE64, DWW78, Hal72]

Sommaire

2 Scavenging of HTO

3 Washout rate and washout ratio

4 Rain characteristics

5 Models

6 Conclusions

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

$$\frac{\delta c(s; x, y, z)}{\delta z} = \frac{3v_d(s)}{v_t(s)s} \left[\chi(x, y, z) - H'c(s; x, y, z) \right]$$

- c(s; x, y, z): concentration of HTO in raindrops (Bq.m⁻³);
- z : height of a drop above ground level (m);
- v_d(s): HTO deposition velocity at the drop surface;
- v_t(s) : deposition velocity of the drop;
- s : radius (m);
- $\chi(x, y, z)$: HTO concentration in gas phase (Bq.m⁻³);
- H' : inverse of Henry's law solubility contant (m³m⁻³).

$$\frac{\delta c(s; x, y, z)}{\delta z} = \frac{3v_d(s)}{v_t(s)s} \left[\chi(x, y, z) - H'c(s; x, y, z) \right]$$

- c(s; x, y, z) : concentration of HTO in raindrops (Bq.m⁻³);
- z : height of a drop above ground level (m);
- v_d(s) : HTO deposition velocity at the drop surface;
- v_t(s) : deposition velocity of the drop;
- s : radius (m);
- $\chi(x, y, z)$: HTO concentration in gas phase (Bq.m⁻³);
- H' : inverse of Henry's law solubility contant (m³m⁻³).

$$\frac{\delta c(s; x, y, z)}{\delta z} = \frac{3 v_d(s)}{v_t(s)s} \left[\chi(x, y, z) - H' c(s; x, y, z) \right]$$

- c(s; x, y, z) : concentration of HTO in raindrops (Bq.m⁻³);
- z : height of a drop above ground level (m);
- $v_d(s)$: HTO deposition velocity at the drop surface;
- v_t(s) : deposition velocity of the drop;
- s : radius (m);
- H' : inverse of Henry's law solubility contant (m³m⁻³).

$$\frac{\delta c(s; x, y, z)}{\delta z} = \frac{3v_d(s)}{v_t(s)s} \left[\chi(x, y, z) - H'c(s; x, y, z) \right]$$

- c(s; x, y, z) : concentration of HTO in raindrops (Bq.m⁻³);
- z : height of a drop above ground level (m);
- v_d(s) : HTO deposition velocity at the drop surface;
- $v_t(s)$: deposition velocity of the drop;
- s : radius (m);
- $\chi(x, y, z)$: HTO concentration in gas phase (Bq.m⁻³);
- H' : inverse of Henry's law solubility contant (m³m⁻³).

$$\frac{\delta c(s; x, y, z)}{\delta z} = \frac{3v_d(s)}{v_t(s)s} \left[\chi(x, y, z) - H'c(s; x, y, z) \right]$$

- c(s; x, y, z) : concentration of HTO in raindrops (Bq.m⁻³);
- z : height of a drop above ground level (m);
- v_d(s): HTO deposition velocity at the drop surface;
- v_t(s) : deposition velocity of the drop;
- s : radius (m);
- $\chi(x, y, z)$: HTO concentration in gas phase (Bq.m⁻³);
- H' : inverse of Henry's law solubility contant (m³m⁻³).

$$\frac{\delta c(s; x, y, z)}{\delta z} = \frac{3v_d(s)}{v_t(s)s} \left[\chi(x, y, z) - H'c(s; x, y, z) \right]$$

- c(s; x, y, z) : concentration of HTO in raindrops (Bq.m⁻³);
- z : height of a drop above ground level (m);
- v_d(s): HTO deposition velocity at the drop surface;
- v_t(s) : deposition velocity of the drop;
- s : radius (m);
- $\chi(x, y, z)$: HTO concentration in gas phase (Bq.m⁻³);
- H' : inverse of Henry's law solubility contant (m³m⁻³).


$$\frac{\delta c(s; x, y, z)}{\delta z} = \frac{3v_d(s)}{v_t(s)s} \left[\chi(x, y, z) - \frac{H'c(s; x, y, z)}{V(s; z)} \right]$$

- c(s; x, y, z) : concentration of HTO in raindrops (Bq.m⁻³);
- z : height of a drop above ground level (m);
- v_d(s): HTO deposition velocity at the drop surface;
- v_t(s) : deposition velocity of the drop;
- s : radius (m);
- H' : inverse of Henry's law solubility contant (m^3m^{-3}) .

Sommaire

2 Scavenging of HTO

Rain characteristics

5 Models

6 Conclusions

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶

$$\Lambda = \frac{1}{t} ln \left[\frac{\chi(t=0)}{\chi(t)} \right] =$$

removal rate per unit volume and time

HTO concentration per unit volume

- is derived from relatively short measurement interval and single individual precipitation
- is functions of precipitation rate
- is apply preferably to individual scavenging conditions (drop-size distribution, different rain types, vertical variation)

- Λ : Washout rate, T⁻¹ t : Time, T
- χ : HTO conc. in the atmosphere AL⁻³

$$\Lambda = \frac{1}{t} ln \left[\frac{\chi(t=0)}{\chi(t)} \right] =$$

removal rate per unit volume and time

HTO concentration per unit volume

- is derived from relatively short measurement interval and single individual precipitation
- is functions of precipitation rate
- is apply preferably to individual scavenging conditions (drop-size distribution, different rain types, vertical variation)

- Λ : Washout rate, T⁻¹ t : Time, T
- χ : HTO conc. in the atmosphere AL⁻³

$$\Lambda = \frac{1}{t} ln \left[\frac{\chi(t=0)}{\chi(t)} \right] =$$

removal rate per unit volume and time

HTO concentration per unit volume

- is derived from relatively short measurement interval and single individual precipitation
- is functions of precipitation rate
- is apply preferably to individual scavenging conditions (drop-size distribution, different rain types, vertical variation)

- Λ : Washout rate, T⁻¹ t : Time, T
- χ : HTO conc. in the atmosphere AL⁻³

washout ratio.

$$\omega = \frac{L}{I} \frac{\int \int_0^\infty \pi R^2 E(a, R) N(R) u_t(R) \chi_{(x,y,z)} dR dz}{\int_0^\infty \chi_{(x,y,z)} dz}$$

- is multiple integral over a variety of different scavenging parameters
- most of the washout ratios has been derived from long measurement periods
- assure the influence of a large variety of scavenging mechanisms = relatively small range

- ω : Washout ratio, dimensionless
- *E* : Collection efficiency, dimensionless
- u_t : Terminal raindrop velocity, LT⁻¹
- R : Raindrop radius, L
- N : Drop-size distribution, L^{-4}
- χ : HTO conc. in the atmosphere AL⁻³

washout ratio.

$$\omega = \frac{L}{I} \frac{\int \int_0^\infty \pi R^2 E(a, R) N(R) u_t(R) \chi_{(x,y,z)} dR dz}{\int_0^\infty \chi_{(x,y,z)} dz}$$

- is multiple integral over a variety of different scavenging parameters
- most of the washout ratios has been derived from long measurement periods
- assure the influence of a large variety of scavenging mechanisms = relatively small range

- ω : Washout ratio, dimensionless
- *E* : Collection efficiency, dimensionless
- u_t : Terminal raindrop velocity, LT⁻¹
- R : Raindrop radius, L
- N : Drop-size distribution, L^{-4}
- χ : HTO conc. in the atmosphere AL⁻³

washout ratio.

$$\omega = \frac{L}{I} \frac{\int_0^\infty \pi R^2 E(a, R) N(R) u_t(R) \chi_{(x,y,z)} dR dz}{\int_0^\infty \chi_{(x,y,z)} dz}$$

- is multiple integral over a variety of different scavenging parameters
- most of the washout ratios has been derived from long measurement periods
- assure the influence of a large variety of scavenging mechanisms = relatively small range

- ω : Washout ratio, dimensionless
- *E* : Collection efficiency, dimensionless
- u_t : Terminal raindrop velocity, LT⁻¹
- R : Raindrop radius, L
- N : Drop-size distribution, L^{-4}
- χ : HTO conc. in the atmosphere AL⁻³

- Used for a individual scavenging;
- Even if washout rate are determined as functions of drop size, drop size distribution, precipitation rate...;
- ⇒ Represents a space-averaged value and is derived from relatively short measurement interval;
- Could be considered as function of the downwind distance and source heigh;

Scavenging process can be considered reversible.

- Used for a individual scavenging;
- Even if washout rate are determined as functions of drop size, drop size distribution, precipitation rate...;
- ⇒ Represents a space-averaged value and is derived from relatively short measurement interval;
- Could be considered as function of the downwind distance and source heigh;

Scavenging process can be considered reversible.

- Used for a individual scavenging;
- Even if washout rate are determined as functions of drop size, drop size distribution, precipitation rate...;
- ⇒ Represents a space-averaged value and is derived from relatively short measurement interval;
- Could be considered as function of the downwind distance and source heigh;

Scavenging process can be considered reversible.

- Used for a individual scavenging;
- Even if washout rate are determined as functions of drop size, drop size distribution, precipitation rate...;
- ⇒ Represents a space-averaged value and is derived from relatively short measurement interval;
- Could be considered as function of the downwind distance and source heigh;

• Scavenging process can be considered reversible.

Washout ratio.

- Has a strongly averaging character because ω is a multiple integral;
- Vertical distribution of air concentration is considered as quasi-homogeneous;;
- multiple integral character leads to a significantly reduction of the variability.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Washout ratio.

- Has a strongly averaging character because ω is a multiple integral;
- Vertical distribution of air concentration is considered as quasi-homogeneous;;
- multiple integral character leads to a significantly reduction of the variability.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Washout ratio.

- Has a strongly averaging character because ω is a multiple integral;
- Vertical distribution of air concentration is considered as quasi-homogeneous;;
- multiple integral character leads to a significantly reduction of the variability.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Washout ratio or rate

- ω or Λ can be used for either continuous or accidental releases;
- Nevertheless, A should be applied to short-period events (accidental release)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

ullet ω should be used to long-term problems (routine releases)

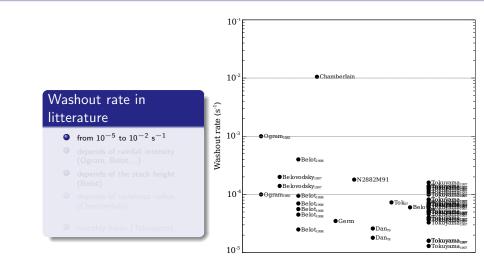
Washout ratio or rate

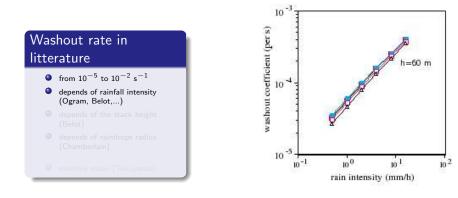
- ω or Λ can be used for either continuous or accidental releases;
- Nevertheless, Λ should be applied to short-period events (accidental release)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

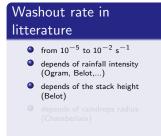
ullet ω should be used to long-term problems (routine releases)

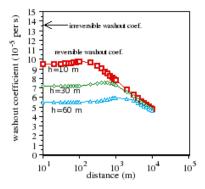
Washout ratio or rate


- ω or Λ can be used for either continuous or accidental releases;
- Nevertheless, Λ should be applied to short-period events (accidental release)


▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• ω should be used to long-term problems (routine releases)

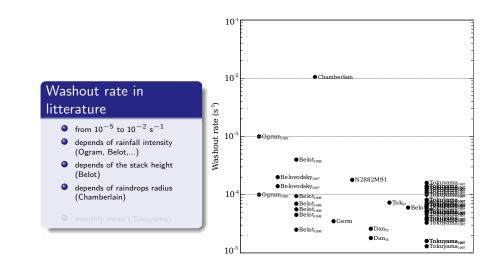

- 日本 - 4 日本 - 4 日本 - 日本



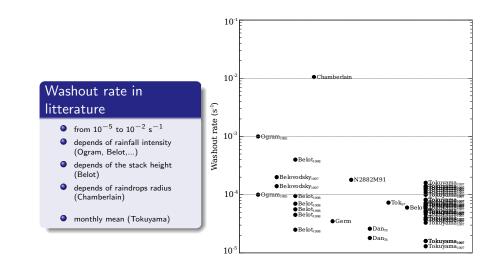
・ロト ・ 四ト ・ ヨト ・ ヨト

э






・ロト ・ 一下・ ・ モト・ ・ モト・


э

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Samples of equation

$$\Lambda = a \cdot (J)^b$$

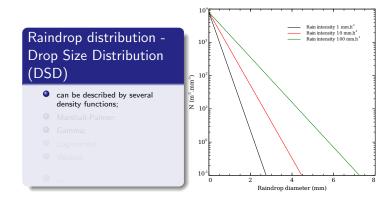
- a and b are two empirical coefficient which depends on local conditions;
- According to Melintescu the recommanded value are a=6.10⁵ and b = 0.77;

• In litterature b ranges between 0.7 and 1.

- 2 Scavenging of HTO
- 3 Washout rate and washout ratio
- 4 Rain characteristics
- 5 Models

6 Conclusions

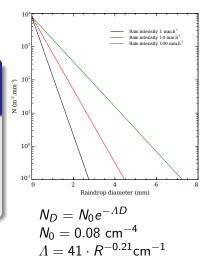
うてん 明 (中学)(中学)(中学)


General meaning

- Washout rate strongly depends of drop characteristics;
- HTO rain activity depends of duration of raindrops throughout the plume;

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- thus raindrop velocity depends
 - Rainfall intensity
 - Raindrop size
 - Raindrop size distribution



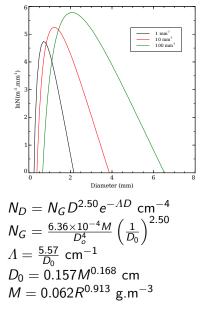
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Raindrop distribution -Drop Size Distribution (DSD)

- can be described by several density functions;
- Marshall-Palmer;
- 🕽 Gamma
- Log-normal
- Weibull
- ð .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

(DSD)


0.01 Rain intensity 10 mm Rain intensity 100 mm⁻¹ 10[°] (cm[°] . N (cm[°] Raindrop distribution -**Drop Size Distribution** 10 can be described by several density functions; Marshall-Palmer: 10-3 0 2 3 Gamma; Diameter (mm) $N_{(D_p)} =$ $\frac{N_D}{\sqrt{2\pi} \cdot D_p \cdot \log \sigma_D} e^{-\frac{(\log D_p - \log \overline{D}_p)^2}{2\log^2 \sigma_D}} N = 172 R^{0.22} \text{ m}^{-3}$ $D_r = 0.72 R^{0.23} \text{ mm}$

 $\sigma = 1.43 - 3.0 \times ^{-4} R$

Raindrop distribution -Drop Size Distribution (DSD)

- can be described by several density functions;
- Marshall-Palmer;
- Gamma;
- Log-normal;
- Weibull

・ロト・西ト・ヨト・ヨー もんぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- can be described by several density functions;
- Marshall-Palmer;
- Gamma;
- Log-normal;
- Weibull

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- can be described by several density functions;
- Marshall-Palmer;
- Gamma;
- Log-normal;
- Weibull

o ...

Raindrop size

- Often described as a function of the rain intensity;
- several equations to computed raindrop size;
- α ranges from 0.243 to 0.97 and β ranges from 0.15 to 0.25;

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

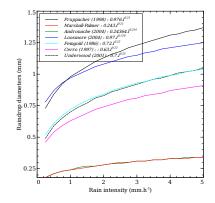
Raindrop size

- Often described as a function of the rain intensity;
- several equations to computed raindrop size;
- lpha ranges from 0.243 to 0.97 and eta ranges from 0.15 to 0.25;

$$D_r = \alpha \cdot J^{\beta}$$

 $\begin{array}{lll} \alpha & : \mbox{ empirical coefficient } & \mbox{ undimensionless } \\ \beta & : \mbox{ empirical coefficient } & \mbox{ undimensionless } \\ J & : \mbox{ Rainfall intensity } & \mbox{ L}.T^{-1} \end{array}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ


Raindrop size

- Often described as a function of the rain intensity;
- several equations to computed raindrop size;
- α ranges from 0.243 to 0.97 and β ranges from 0.15 to 0.25;

Pruppacher and Klett	$0.96~ imes~J^{0.21}$	[PK98]
Marshall-Palmer	0.243 $ imes$ J ^{0.21}	[MP48]
Andronache	$0.24364 \times J^{0.214}$	[And04]
Loosmore and Cederwall	$0.97~ imes~J^{0.158}$	[LC04]
Feingold and Levin	$0.72 \times J^{0.23}$	[FL86]
Cerro et al.	$0.630 \times J^{0.23}$	[CCBL97]
Underwood	$0.7~ imes~J^{0.25}$	[Und01]

Raindrop size

- Often described as a function of the rain intensity;
- several equations to computed raindrop size;
- α ranges from 0.243 to 0.97 and β ranges from 0.15 to 0.25;

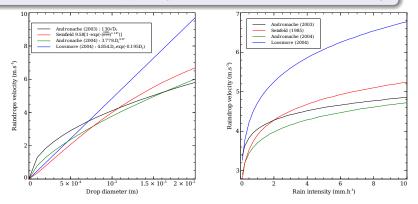
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Raindrop velocity

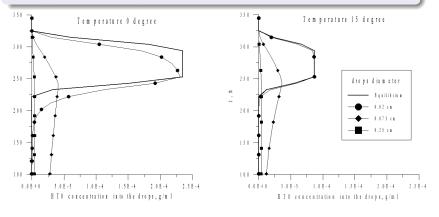
- Stokes cannot used (diameters $> 20 \mu m$)
- Several equations to computed raindrop velocity as function of diameter;
- Evolution of the raindrop velocity as function of diameter and rainfall intensity

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

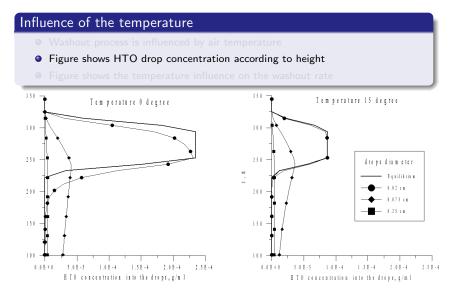
Raindrop velocity


- Stokes cannot used (diameters > 20µm)
- Several equations to computed raindrop velocity as function of diameter;
- Evolution of the raindrop velocity as function of diameter and rainfall intensity

Andronache	$130 \sqrt{D_r}$	[And03]
Seinfeld	$9.58\left[1-exp\left(-\left(\frac{D_r}{0.171\times10^{-2}}\right)^{1.147}\right)\right]$	[Sei85]
Andronache	$3.778 \cdot D_r^{0.67}$	[And04]
Loosmore and Cederwall	$4.854\cdot D_r exp\left(-195 imes 10^{-3} ight)$	[LC04]
Best	$V_t(s) = a \left\{ 1 - exp \left[-\left(rac{s}{b} ight)^n ight] ight\}$	
Chamberlain and Eggleton	$V_t(s) = 7000 \cdot s + 12000 \cdot s^{1.97}$	[Cha53]
	with $s = 0.037 Log(J) + 0.0661$	

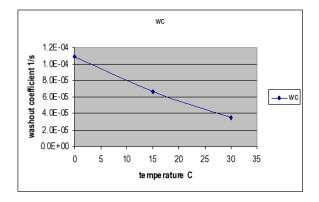

Raindrop velocity

- Stokes cannot used (diameters $> 20 \mu m$)
- Several equations to computed raindrop velocity as function of diameter;
- Evolution of the raindrop velocity as function of diameter and rainfall intensity



Influence of the temperature

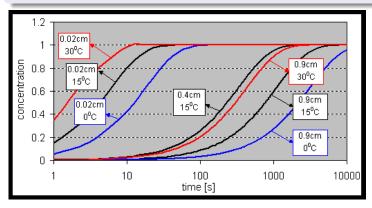
- Washout process is influenced by air temperature
- Figure shows HTO drop concentration according to height
- Figure shows the temperature influence on the washout rate


◆□> ◆□> ◆三> ◆三> ● 三 のへの

◆□> ◆□> ◆三> ◆三> ・三 のへの

Influence of the temperature

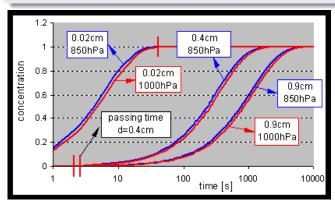
- Washout process is influenced by air temperature
- Figure shows HTO drop concentration according to height
- Figure shows the temperature influence on the washout rate


Sensitivity study from Atanassov

 Sensitive analysis of eulerian model (Atanossov) show the influence of rain parameters (70%) and the temperature (50%) on the washout process;

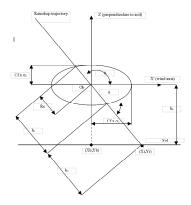
- Sensitivity of temperature, raindrop diameter;
- Sensitivity of atmospheric pressure.

Sensitivity study from Atanassov


- Sensitive analysis of eulerian model (Atanossov) show the influence of rain parameters (70%) and the temperature (50%) on the washout process;
- Sensitivity of temperature, raindrop diameter;
- Sensitivity of atmospheric pressure.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注目 のへ(?)

Sensitivity study from Atanassov


- Sensitive analysis of eulerian model (Atanossov) show the influence of rain parameters (70%) and the temperature (50%) on the washout process;
- Sensitivity of temperature, raindrop diameter;
- Sensitivity of atmospheric pressure.

Other parameters

- The wind influence the raindrop trajectory (taking account by CEA model)
- Could the Wind influence the DSD 1
- Intensity of rain according to time ⇒ evolution of DSD [↑]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Other parameters

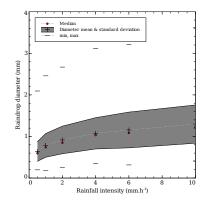
The wind influence the raindrop trajectory (taking account by CEA model)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

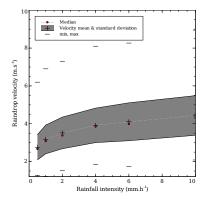
- Could the Wind influence the DSD ?
- Intensity of rain according to time \Rightarrow evolution of DSD ?

Other parameters

The wind influence the raindrop trajectory (taking account by CEA model)


▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- Could the Wind influence the DSD ?
- Intensity of rain according to time \Rightarrow evolution of DSD ?

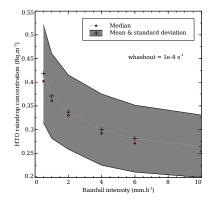

• Average rainfall intensity, distribution, diameter of raindrop, velocity are often used but which uncertainty do we do ?;

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Figure shows mean and uncertainty of diameter for the lognormal distribution by using the parameters given by Feingold (1000 simulations that represents raindrops) and the Andronache formula to compute diameter;

• Figure shows the raindrop average velocity according to Andronache formula;

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで


• Figure shows the time needs by drops to cross a 10 m layer according to the rain drop velocity calculate before;

ヘロト ヘ週ト ヘヨト ヘヨト

æ

• Figure shows the HTO average activity of raindrop computed by Chamberlain equation, for a specific activity of water vapor in air of 1000 Bq.m⁻³ and a washout rate of 10^{-4} s⁻¹.

イロト 不得 トイヨト イヨト

э

Sommaire

- 2 Scavenging of HTO
- 3 Washout rate and washout ratio

Rain characteristics

5 Models

6 Conclusions

うどん 同 (山田)(山田)(山)(山)

• Simple model $C_{rain} = \alpha C_{atm}$

- $\alpha = 0.4 = const$ allows description of averaged experimental data;
- Complex model (Golubev, VNIIEF) can take into account kinetics of HTO exchange between vapor and liquid phase with parameters(rain drop spectra, rain intensity, condensation-evaporation on drop's interface);
- ⇒ wind velocity and better choice of drop velocity explain the difference with the Belot model;
- Models often use gaussian approximation for the air concentration and selected empirical equation for DSD and drop velocity;
- Eulerian model (IFIN-NH and Bulgarian meteorological researchers) describes washout independently of dispersion.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

- Simple model $C_{rain} = \alpha C_{atm}$
- $\alpha = 0.4 = const$ allows description of averaged experimental data;
- Complex model (Golubev, VNIIEF) can take into account kinetics of HTO exchange between vapor and liquid phase with parameters(rain drop spectra, rain intensity, condensation-evaporation on drop's interface);
- ⇒ wind velocity and better choice of drop velocity explain the difference with the Belot model;
- Models often use gaussian approximation for the air concentration and selected empirical equation for DSD and drop velocity;
- Eulerian model (IFIN-NH and Bulgarian meteorological researchers) describes washout independently of dispersion.

- Simple model $C_{rain} = \alpha C_{atm}$
- $\alpha = 0.4 = const$ allows description of averaged experimental data;
- Complex model (Golubev, VNIIEF) can take into account kinetics of HTO exchange between vapor and liquid phase with parameters(rain drop spectra, rain intensity, condensation-evaporation on drop's interface);
- ⇒ wind velocity and better choice of drop velocity explain the difference with the Belot model;
- Models often use gaussian approximation for the air concentration and selected empirical equation for DSD and drop velocity;
- Eulerian model (IFIN-NH and Bulgarian meteorological researchers) describes washout independently of dispersion.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

- Simple model $C_{rain} = \alpha C_{atm}$
- α = 0.4 = const allows description of averaged experimental data;
- Complex model (Golubev, VNIIEF) can take into account kinetics of HTO exchange between vapor and liquid phase with parameters(rain drop spectra, rain intensity, condensation-evaporation on drop's interface);
- ⇒ wind velocity and better choice of drop velocity explain the difference with the Belot model;
- Models often use gaussian approximation for the air concentration and selected empirical equation for DSD and drop velocity;
- Eulerian model (IFIN-NH and Bulgarian meteorological researchers) describes washout independently of dispersion.

- Simple model $C_{rain} = \alpha C_{atm}$
- $\alpha = 0.4 = const$ allows description of averaged experimental data;
- Complex model (Golubev, VNIIEF) can take into account kinetics of HTO exchange between vapor and liquid phase with parameters(rain drop spectra, rain intensity, condensation-evaporation on drop's interface);
- ⇒ wind velocity and better choice of drop velocity explain the difference with the Belot model;
- Models often use gaussian approximation for the air concentration and selected empirical equation for DSD and drop velocity;
- Eulerian model (IFIN-NH and Bulgarian meteorological researchers) describes washout independently of dispersion.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

- Simple model $C_{rain} = \alpha C_{atm}$
- $\alpha = 0.4 = const$ allows description of averaged experimental data;
- Complex model (Golubev, VNIIEF) can take into account kinetics of HTO exchange between vapor and liquid phase with parameters(rain drop spectra, rain intensity, condensation-evaporation on drop's interface);
- ⇒ wind velocity and better choice of drop velocity explain the difference with the Belot model;
- Models often use gaussian approximation for the air concentration and selected empirical equation for DSD and drop velocity;
- Eulerian model (IFIN-NH and Bulgarian meteorological researchers) describes washout independently of dispersion.

- 日本 - 1 日本 - 日本 - 日本

Sommaire

- 2 Scavenging of HTO
- 3 Washout rate and washout ratio

4 Rain characteristics

5 Models

- Washout = process too complex to be described by comprehensively by simple washout coefficient;
- Experimental data miss and lead to the incertainty in the washout assessment;
- Too few studies about washout during snow (Λ = 2 × 10⁻⁵s⁻¹) or fog (deposition more importante than rain ?);
- Improvements have to be done on inputs but which ?
 - Better knowledge of cloud and rain process on HTO scavenging
 - Taking account of local conditions (topography)
 - Taking account of time evolution for rain process
 - Select parameters which influence washout
 - Chose typical rainfall conditions and give their representative washout rates ?
 - Incertainty on assumptions
- Improvements have to be done on computed of washout
 - Washout rate or washout coefficient
 - Drop model better or simple model (with lpha
 - Incertainty of model
 - Atmospheric dispersion models (gaussian, lagrangian, ...

- Washout = process too complex to be described by comprehensively by simple washout coefficient;
- Experimental data miss and lead to the incertainty in the washout assessment;
- Too few studies about washout during snow (Λ = 2 × 10⁻⁵s⁻¹) or fog (deposition more importante than rain ?);
- Improvements have to be done on inputs but which ?
 - Better knowledge of cloud and rain process on HTO scavenging
 - Taking account of local conditions (topography
 - Taking account of time evolution for rain process
 - Select parameters which influence washout
 - Chose typical rainfall conditions and give their representative washout rates ?
 - Incertainty on assumptions
- Improvements have to be done on computed of washout
 - Washout rate or washout coefficient
 - Drop model better or simple model (with lpha
 - Incertainty of model
 - Atmospheric dispersion models (gaussian, lagrangian, ...

- Washout = process too complex to be described by comprehensively by simple washout coefficient;
- Experimental data miss and lead to the incertainty in the washout assessment;
- Too few studies about washout during snow (Λ = 2 × 10⁻⁵s⁻¹) or fog (deposition more importante than rain ?);
- Improvements have to be done on inputs but which ?
 - Better knowledge of cloud and rain process on HTO scavenging
 - Taking account of local conditions (topography
 - Taking account of time evolution for rain process
 - Select parameters which influence washout
 - Chose typical rainfall conditions and give their representative washout rates ?
 - Incertainty on assumptions
- Improvements have to be done on computed of washout
 - Washout rate or washout coefficient
 - Drop model better or simple model (with lpha
 - Incertainty of model
 - Atmospheric dispersion models (gaussian, lagrangian, ...

- Washout = process too complex to be described by comprehensively by simple washout coefficient;
- Experimental data miss and lead to the incertainty in the washout assessment;
- Too few studies about washout during snow (Λ = 2 × 10⁻⁵s⁻¹) or fog (deposition more importante than rain ?);
- Improvements have to be done on inputs but which ?
 - Better knowledge of cloud and rain process on HTO scavenging
 - Taking account of local conditions (topography)
 - Taking account of time evolution for rain process
 - Select parameters which influence washout
 - Chose typical rainfall conditions and give their representative washout rates ?
 - Incertainty on assumptions
- Improvements have to be done on computed of washout
 - Washout rate or washout coefficient
 - Drop model better or simple model (with lpha
 - Incertainty of model
 - Atmospheric dispersion models (gaussian, lagrangian, ...

- Washout = process too complex to be described by comprehensively by simple washout coefficient;
- Experimental data miss and lead to the incertainty in the washout assessment;
- Too few studies about washout during snow (Λ = 2 × 10⁻⁵s⁻¹) or fog (deposition more importante than rain ?);
- Improvements have to be done on inputs but which ?
 - Better knowledge of cloud and rain process on HTO scavenging
 - Laking account of local conditions (topography)
 - Taking account of time evolution for rain process
 - Select parameters which influence washout
 - Chose typical rainfall conditions and give their representative washout rates ?
 - Incertainty on assumptions
- Improvements have to be done on computed of washout
 - Washout rate or washout coefficient
 - Drop model better or simple model (with lpha
 - Incertainty of model
 - Atmospheric dispersion models (gaussian, lagrangian, ...

- Washout = process too complex to be described by comprehensively by simple washout coefficient;
- Experimental data miss and lead to the incertainty in the washout assessment;
- Too few studies about washout during snow (Λ = 2 × 10⁻⁵s⁻¹) or fog (deposition more importante than rain ?);
- Improvements have to be done on inputs but which ?
 - Better knowledge of cloud and rain process on HTO scavenging
 - Taking account of local conditions (topography)
 - Iaking account of time evolution for rain process
 - Select parameters which influence washout
 - Chose typical rainfall conditions and give their representative washout rates ?
 - Incertainty on assumptions
- Improvements have to be done on computed of washout
 - Washout rate or washout coefficient
 - Drop model better or simple model (with lpha
 - Incertainty of model
 - Atmospheric dispersion models (gaussian, lagrangian, ...

- Washout = process too complex to be described by comprehensively by simple washout coefficient;
- Experimental data miss and lead to the incertainty in the washout assessment;
- Too few studies about washout during snow (Λ = 2 × 10⁻⁵s⁻¹) or fog (deposition more importante than rain ?);
- Improvements have to be done on inputs but which ?
 - Better knowledge of cloud and rain process on HTO scavenging
 - Taking account of local conditions (topography)
 - Taking account of time evolution for rain process
 - Select parameters which influence washout
 - Chose typical rainfall conditions and give their representative washout rates ?

- Incertainty on assumptions
- Improvements have to be done on computed of washout
 - Washout rate or washout coefficient
 - Drop model better or simple model (with lpha
 - Incertainty of model
 - Atmospheric dispersion models (gaussian, lagrangian, ...

- Washout = process too complex to be described by comprehensively by simple washout coefficient;
- Experimental data miss and lead to the incertainty in the washout assessment;
- Too few studies about washout during snow (Λ = 2 × 10⁻⁵s⁻¹) or fog (deposition more importante than rain ?);
- Improvements have to be done on inputs but which ?
 - Better knowledge of cloud and rain process on HTO scavenging
 - Taking account of local conditions (topography)
 - Taking account of time evolution for rain process
 - Select parameters which influence washout
 - Chose typical rainfall conditions and give their representative washout rates ?

- Incertainty on assumptions
- Improvements have to be done on computed of washout
 - Washout rate or washout coefficient
 - Drop model better or simple model (with α
 - Incertainty of model
 - Atmospheric dispersion models (gaussian, lagrangian, ...

- Washout = process too complex to be described by comprehensively by simple washout coefficient;
- Experimental data miss and lead to the incertainty in the washout assessment;
- Too few studies about washout during snow (Λ = 2 × 10⁻⁵s⁻¹) or fog (deposition more importante than rain ?);
- Improvements have to be done on inputs but which ?
 - Better knowledge of cloud and rain process on HTO scavenging
 - Taking account of local conditions (topography)
 - Taking account of time evolution for rain process
 - Select parameters which influence washout
 - Chose typical rainfall conditions and give their representative washout rates ?
 - Incertainty on assumptions
- Improvements have to be done on computed of washout
 - Washout rate or washout coefficient
 - Drop model better or simple model (with lpha
 - Incertainty of model
 - Atmospheric dispersion models (gaussian, lagrangian, ...

- Washout = process too complex to be described by comprehensively by simple washout coefficient;
- Experimental data miss and lead to the incertainty in the washout assessment;
- Too few studies about washout during snow (Λ = 2 × 10⁻⁵s⁻¹) or fog (deposition more importante than rain ?);
- Improvements have to be done on inputs but which ?
 - Better knowledge of cloud and rain process on HTO scavenging
 - Taking account of local conditions (topography)
 - Taking account of time evolution for rain process
 - Select parameters which influence washout
 - Chose typical rainfall conditions and give their representative washout rates ?
 - Incertainty on assumptions
- Improvements have to be done on computed of washout
 - Washout rate or washout coefficient
 - Drop model better or simple model (with lpha
 - Incertainty of model
 - Atmospheric dispersion models (gaussian, lagrangian, ...

- Washout = process too complex to be described by comprehensively by simple washout coefficient;
- Experimental data miss and lead to the incertainty in the washout assessment;
- Too few studies about washout during snow (Λ = 2 × 10⁻⁵s⁻¹) or fog (deposition more importante than rain ?);
- Improvements have to be done on inputs but which ?
 - Better knowledge of cloud and rain process on HTO scavenging
 - Taking account of local conditions (topography)
 - Taking account of time evolution for rain process
 - Select parameters which influence washout
 - Chose typical rainfall conditions and give their representative washout rates ?

- Incertainty on assumptions
- Improvements have to be done on computed of washout
 - Washout rate or washout coefficient
 - Drop model better or simple model (with lpha
 - Incertainty of model
 - Atmospheric dispersion models (gaussian, lagrangian, ...

- Washout = process too complex to be described by comprehensively by simple washout coefficient;
- Experimental data miss and lead to the incertainty in the washout assessment;
- Too few studies about washout during snow (Λ = 2 × 10⁻⁵s⁻¹) or fog (deposition more importante than rain ?);
- Improvements have to be done on inputs but which ?
 - Better knowledge of cloud and rain process on HTO scavenging
 - Taking account of local conditions (topography)
 - Taking account of time evolution for rain process
 - Select parameters which influence washout
 - Chose typical rainfall conditions and give their representative washout rates ?

- Incertainty on assumptions
- Improvements have to be done on computed of washout
 - Washout rate or washout coefficient
 - Drop model better or simple model (with α)
 - Incertainty of model
 - Atmospheric dispersion models (gaussian, lagrangian, ...

- Washout = process too complex to be described by comprehensively by simple washout coefficient;
- Experimental data miss and lead to the incertainty in the washout assessment;
- Too few studies about washout during snow (Λ = 2 × 10⁻⁵s⁻¹) or fog (deposition more importante than rain ?);
- Improvements have to be done on inputs but which ?
 - Better knowledge of cloud and rain process on HTO scavenging
 - Taking account of local conditions (topography)
 - Taking account of time evolution for rain process
 - Select parameters which influence washout
 - Chose typical rainfall conditions and give their representative washout rates ?
 - Incertainty on assumptions
- Improvements have to be done on computed of washout
 - Washout rate or washout coefficient
 - Drop model better or simple model (with α)
 - Incertainty of model
 - Atmospheric dispersion models (gaussian, lagrangian, ...

- Washout = process too complex to be described by comprehensively by simple washout coefficient;
- Experimental data miss and lead to the incertainty in the washout assessment;
- Too few studies about washout during snow (Λ = 2 × 10⁻⁵s⁻¹) or fog (deposition more importante than rain ?);
- Improvements have to be done on inputs but which ?
 - Better knowledge of cloud and rain process on HTO scavenging
 - Taking account of local conditions (topography)
 - Taking account of time evolution for rain process
 - Select parameters which influence washout
 - Chose typical rainfall conditions and give their representative washout rates ?
 - Incertainty on assumptions
- Improvements have to be done on computed of washout
 - Washout rate or washout coefficient
 - Drop model better or simple model (with α)
 - Incertainty of model
 - Atmospheric dispersion models (gaussian, lagrangian, ...)

References

C. Andronache.

Estimated variability of below-cloud aerosol removal by rainfall for observed aerosol size distribution. *Atmospheric Chemistry and Physics*, 3:131–143, 2003.

C. Andronache.

Diffusion and electric charge contributions to below-cloud wet removal of atmospheric ultra-fine aerosol particles.

Journal of Aerosol Science, 35:1467-1482, 2004.

C. Cerro, B. Codina, J Bech, and J Lorente.

Modeling raindrop size distribution and z(r) relations in the western mediterranean area. *Journal of Applied Meteorology*, 36:1470–1479, 1997.

A.C. Chamberlain and E.J. Eggleton.

Washout of tritiated water vapour by rain. Air Water Pollution, 8:135-149, 1964.

A.C. Chamberlain.

Aspects of travel and deposition of aerosol and vapor clouds. UKEA Report HP/R1261, 1953.

M. T. Dana, N. A. Wogman, and M.A. Wolf.

Rain scavenging of tritiated water (hto): a field experiment and theoretical considerations. Atmospheric Environment, 12:1523–1529, 1978.

G. Feingold and Z. Levin.

The lognormal fit to raindrop spectra from frontal convective clouds in israël. *Journal of climate and applied meteorology*, 25:1346–1363, 1986.

H. Foerstel.

Ht to hto conversion in the soil and susequent tritium pathway: field release data and laboratory