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@ To calculate HTO transfer from atmosphere to soil, dry and wet deposition
should be calculated;

@ Dry deposition

HT velocity to the soil surface is about 4.107>- 4.10=3 m.s~!
HTO velocity to the soil surface is about 10~3- 1072 m.s!
depends of soil composition, soil humidity, landcover...
exchange velocity follow the Fick law;

[Foe88b, Foe88a, Gar80, OSB88, PCcCtss, TWBSS]

@ Wet deposition during rain
@ HT solubility is very weak — deposition negligible
@ HTO solubility is important — HTO is exchanged with H>O in the rain
drop
@ to estimate HTO wet deposition, we have to calculate the specific activity
of rain water
@ a washout rate or a washout coefficient
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Exchange of tritiated water vapour between a falling rain drop follow the steps :

@ HTO molecules migrate from the atmosphere to the surface of drop,
@ HTO molecule pass through the liquid-vapour interface,
© HTO molecule migrate into the drop
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Introduction

Main knowledge.

@ Total solubility is inadequat for HTO;

HTO exchange between atmosphere and drop is reversible;
Under the plume, desorbtion can be possible;

but never in equilibrium because the raindrop velocity is high.
[CE64, DWW78, Hal72]
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Scavenging of HTO

Gas scavenging model :

dc(s; x,y,2) _ 3vy4(s)

5z Vt(S)S [X(X7y1 Z) - HIC(S; vavz)]

c(s;x,y,z) : concentration of HTO in raindrops (Bq.m~3);
z : height of a drop above ground level (m);

v4(s) : HTO deposition velocity at the drop surface;

vt(s) : deposition velocity of the drop;

s : radius (m);

X(x,y,2) : HTO concentration in gas phase (Bq.m—3);

H' : inverse of Henry's law solubility contant (m3m~—3).
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Scavenging of HTO

Gas scavenging model :

dc(s;x,y,2z) _ 3vy(s)

iz vi(s)s [x(x,y,2) = H'c(s; x, y, 2)]

c(s;x,y,2) : concentration of HTO in raindrops (Bq.m~3);
z : height of a drop above ground level (m);

v4(s) : HTO deposition velocity at the drop surface;

vt(s) : deposition velocity of the drop;

s : radius (m);

X(x,y,2) : HTO concentration in gas phase (Bq.m—3);

H' : inverse of Henry's law solubility contant (m3m~—3).
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@ is multiple integral over a variety of different scavenging parameters

@ most of the washout ratios has been derived from long measurement periods

@ assure the influence of a large variety of scavenging mechanisms = relatively

small range
L]
w : Washout ratio, dimensionless R : Raindrop radius, L
E . Collection efficiency, dimensionless N : Drop-size distribution, L—*

us : Terminal raindrop velocity, LT—1 X : HTO conc. in the atmosphere AL—3
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Washout rate.

@ Used for a individual scavenging;

@ Even if washout rate are determined as functions of drop size, drop size
distribution, precipitation rate...;

@ = Represents a space-averaged value and is derived from relatively short
measurement interval;

@ Could be considered as function of the downwind distance and source heigh;

@ Scavenging process can be considered reversible.
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Washout rate and washout ratio

Washout ratio or rate

@ w or A can be used for either continuous or accidental releases;
@ Nevertheless, A should be applied to short-period events (accidental release)

@ w should be used to long-term problems (routine releases)
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Washout rate in

litterature
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@ depends of rainfall intensity
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Washout rate and washout ratio

Samples of equation

A=a-(J)°

@ a and b are two empirical coefficient which depends on local conditions;
@ According to Melintescu the recommanded value are a=6.10% and b = 0.77;

@ In litterature b ranges between 0.7 and 1.
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Rain characteristics

General meaning

@ Washout rate strongly depends of drop characteristics;
@ HTO rain activity depends of duration of raindrops throughout the plume;

@ thus raindrop velocity depends

@ Rainfall intensity
@ Raindrop size

@ Raindrop size distribution




Raindrop distribution -

Drop Size Distribution
(DSD)

@ can be described by several
density functions;
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Raindrop distribution -
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Raindrop distribution -

Drop Size Distribution
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Rain characteristics

Raindrop size

@ Often described as a function of the rain intensity;




Rain characteristics

@ several equations to computed raindrop size;

D, =a-J°

: empirical coefficient  undimensionless
: empirical coefficient  undimensionless
: Rainfall intensity LT !

@R




Rain characteristics

Raindrop size

@ « ranges from 0.243 to 0.97 and 3 ranges from 0.15 to 0.25;

Pruppacher and Klett 0.96 x J0-21 [PK98]
Marshall-Palmer 0.243 x J0-21 [MP48]
Andronache 0.24364 x J021%  [ando4]
Loosmore and Cederwall ~ 0.97 x J0-158 [LCo4]
Feingold and Levin 0.72 x J0-23 [FL86]
Cerro et al. 0.630 x J0-23 [CCBLI7]

Underwood 0.7 x J0-2 [Undo01]



Raindrop size

Rain characteristics

@ « ranges from 0.243 to 0.97 and 3 ranges from 0.15 to 0.25;

Raindrop diameters (mm)

15

1.25

ol
o

0.25

Pruppacher (1998) : 0.976.1°"
Marshall-Pamer : 0.243.1'"'

Andronache (2004) : 0.24364.1"""*

Loosmore (2004) : 0.97.1"""

Feingold (1986) : 0.72.1°*

Cerro (1997) : : 0.63.1* /
Underwood (20010712

1 2 3
Rain intensity (mm.h")



Rain characteristics

Raindrop velocity

@ Stokes cannot used (diameters > 20pm)
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Raindrop velocity

@ Several equations to computed raindrop velocity as function of diameter;

Andronache 130 /D, [And03]
D 1.147

Seinfeld 9.58 |:1 — exp <— (W) ):| [Sei85]

Andronache 3.778 - D9'67 [And04]

Loosmore and Cederwall 4.854 - D,exp (—195 X 10_32 [LCO4]

Best Vi(s)=a {1 — exp [— (%) } }

Chamberlain and Eggleton Vt(S) = 7000 - s 4+ 12000 - s197 [Chab3]

with s = 0.037Log(J) + 0.0661



Raindrop velocity

Rain characteristics

@ Evolution of the raindrop velocity as function of diameter and rainfall intensity

Raindrops velocity (m.s™)

10

Andronache (2003) : 130vD,

Seinfield 9.58[1-exp(-(77)" )1
Andronache (2004) : 3.778.D,""

Loosmore (2004) : 4.854.D,.exp(-0.195D,) b

I I
5x10* 10°
Drop diameter (m)

I
1.5x10% 2x10°

Raindrop velocity (m.s™)

7

Andromache (2003)
Seinfeld (1985)
Andromache (2004)
Loosmore (2004)

o

4 6 8 10
Rain intensity (mm.h")



Rain characteristics

Influence of the temperature

@ Washout process is influenced by air temperature

150

10— R
Temperature 0 degree J Temperature 15 degree
100 =
0 B drops dinm eter
= B ——— Equilibine
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Rain characteristics

Influence of the temperature

@ Figure shows HTO drop concentration according to height
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Rain characteristics

Influence of the temperature

@ Figure shows the temperature influence on the washout rate
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Rain characteristics

Sensitivity study from Atanassov

@ Sensitive analysis of eulerian model (Atanossov) show the influence of rain
parameters (70%) and the temperature (50%) on the washout process;




Rain characteristics

Sensitivity study from Atanassov

@ Sensitivity of temperature, raindrop diameter;

concentration

1 10 100 1000 10000
time [=]
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Sensitivity study from Atanassov

@ Sensitivity of atmospheric pressure.

0.0Zem 0.4cm
1777 s50hPa N7 850hPa

08 fosennmcness I e A’ St
1000hPa 09cm
R e Ay . 850hPa

concentration

04 4-mmmns passing time f---- .2 4
d=0dcrm / Vi 0.9crm
02 4 A R

1 10




Rain characteristics

Other parameters

@ The wind influence the raindrop trajectory (taking account by CEA model)

Cexo. Al
X (wind axis)

. Wl
(Xb,Yb) Xiyi)
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Other parameters

@ Could the Wind influence the DSD ?




Rain characteristics

Other parameters

@ Intensity of rain according to time = evolution of DSD ?




Rain characteristics

Models incertainty

@ Average rainfall intensity, distribution, diameter of raindrop, velocity are often
used but which uncertainty do we do ?7;




Rain characteristics

Models incertainty

@ Figure shows mean and uncertainty of diameter for the lognormal distribution by
using the parameters given by Feingold (1000 simulations that represents
raindrops) and the Andronache formula to compute diameter;

4 T

o Median
BB Diameter mean & standard deviation
—  min, max

Raindrop diameter (mm)

2 4

Rainfall intensity (mm.h")

6



Rain characteristics

Models incertainty

@ Figure shows the raindrop average velocity according to Andronache formula;

10 T
. Median
BBl Velocity mean & standard deviation 4
— min, max
sk - |
% -
g
z _
S 6F R
3
S
g
2
5
2
-
£
L
A J
n . . .
0 2 4 6 8 10

Rainfall intensity (mm.h?)
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Models incertainty

@ Figure shows the time needs by drops to cross a 10 m layer according to the rain
drop velocity calculate before;

8 o Median
EEEE  Mean & standard deviation
_ —  min, max

Time for passing through a 10 m layer (s)

0 1 1 1 1
0 2 4 6 8 10
Rainfall intensity (mm.h")




Rain characteristics

Models incertainty

@ Figure shows the HTO average activity of raindrop computed by Chamberlain
equation, for a specific activity of water vapor in air of 1000 Bq.m~3 and a
washout rate of 10=4s~1.

0.55
+  Median
05k BBl Mean & standard deviation
0451 whashout = le-4 s

HTO raindrop concentration (Bq.m?)

. N
4 6
Rainfall intensity (mm.h™)
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@ Simple model C.i, = aCatm




@ Simple model C.i, = aCatm

@ o = 0.4 = const allows description of averaged experimental data;




@ Complex model (Golubev, VNIIEF) can take into account kinetics of HTO
exchange between vapor and liquid phase with parameters(rain drop spectra,
rain intensity, condensation-evaporation on drop’s interface);




@ Complex model (Golubev, VNIIEF) can take into account kinetics of HTO
exchange between vapor and liquid phase with parameters(rain drop spectra,
rain intensity, condensation-evaporation on drop’s interface);

@ = wind velocity and better choice of drop velocity explain the difference with
the Belot model;




Models

@ Models often use gaussian approximation for the air concentration and selected
empirical equation for DSD and drop velocity;




@ Models often use gaussian approximation for the air concentration and selected
empirical equation for DSD and drop velocity;

@ Eulerian model (IFIN-NH and Bulgarian meteorological researchers) describes
washout independently of dispersion.
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Washout = process too complex to be described by comprehensively by simple
washout coefficient;

Experimental data miss and lead to the incertainty in the washout assessment;

Too few studies about washout during snow (A =2 x 10~°s1) or fog
(deposition more importante than rain ?);

Improvements have to be done on inputs but which ?

Improvements have to be done on computed of washout

Better knowledge of cloud and rain process on HTO scavenging
Taking account of local conditions (topography)

Taking account of time evolution for rain process

Select parameters which influence washout

Chose typical rainfall conditions and give their representative washout
rates 7

Incertainty on assumptions

Washout rate or washout coefficient

Drop model better or simple model (with «)

Incertainty of model

Atmospheric dispersion models (gaussian, lagrangian, ...)
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