OBT Formation in Night Experiments and Modeling Trials at CRL

January 25-29, 2010

Sang Bog Kim, Ph.D. Research Scientist Environmental Technologies Branch Chalk River Laboratories Chalk River, Ontario Canada

EMRAS II

- IAEA (International Atomic Energy Agency)'s Programme
- Environmental Modelling for Radiation Safety II
 - Intercomparison and Harmonization Project
- 9 Working Groups in EMRAS II
 - Working Group 7 : "Tritium" Accident
 - 1) Two goals (Optimization and Uncertainty)
 - 2) Canada is one of the leading countries

Outline

- Background on environmental tritium in Canada
- Knowledge gaps in OBT formation
- HTO exposure experiments at night
- Plant physiology
- Conceptual and mathematical model
- Example of OBT prediction at night
- Summary

Canada's Nuclear Power Reactors

- 17 CANDUs are currently operating
- 3 are being refurbished
- 2 are in guaranteed shutdown state

Nuclear Facilities in Canada

Type	Location	Facilities	In Service
	Optorio		4000
Nuclear Power	Untario	Danington	1990
Generating		Pickering	1971
Station		Bruce	1978
	Quebec	Gentilly-2	1983
	New Brunswick	Point Lepreau	1983
Tritium Processing	Ontario	SRB Tec.	N/A
Facilities		SS Inc.	N/A
Research	Ontario	CRL	1952
Facilities	Manitoba	WL	1963-
			1998

Tritium Oxide in Gaseous Effluent

Source from CNSC

Tritium Oxide in Liquid Effluent

Total HTO in Released Effluents in Canada

What is the fate of tritium released into the environment?

Regulation (International Limits for Tritium in Drinking Water)

Countries/	Tritium Limit	
Organization	(Bq/L)	Application
Health Canada,	7,000	Guideline
Ontario and Quebec		Standard
U.S.A. EPA	740	Max. Contaminant L.
California EPA	15	Public Health Goal
European Union	100	Screening Value
Finland	30,000	Standard
Australia	76,103	Guideline
WHO	10,000	Guideline

The Ontario Drinking Water Quality Standard for tritium was revised to 20 Bq/L (2009)!

Environmental Issues

- Environmental release forms are HT and HTO
- Environmental measureable forms are HTO and OBT
- HTO measurement is relatively simple and straightforward
- OBT behaviour in the environment is relatively complicated and has a higher uncertainty than HTO behaviour
 - OBT measurement is useful for normal operations
 - OBT prediction is useful for accidental situations

Knowledge Gaps in OBT Formation

- Theory of OBT formation in plants and animals
- Fraction of exchangeable and non-exchangeable OBT
- OBT formation and translocation during the day
- OBT formation and translocation at night
- OBT behaviour in the terrestrial ecosystem
- OBT behaviour in the aquatic ecosystem
- Uncertainty of OBT measurement and OBT prediction

HTO Exposure Experiments at Night

- The first experiment was conducted in Germany (1996)
 - Open wheat field using an exposure chamber
- The second experiment was conducted in Korea (1998)
 - Rice pots using an exposure chamber
- The third experiment was conducted in Canada (2004)
 - Open field experiment with tomato pots at Perch Lake (2001)
 - Tomato pots using an exposure chamber (2004)

Experiments in Germany

Experiments in Korea

Two Different CRL Experiments

- Kotzer et al. (2001): Exposed potted tomato plants for short periods of time (7 or 8 hours) to elevated tritium concentrations at Perch Lake
- The experiment was not successful because the air concentrations were too low to induce detectable increases in the OBT concentrations in the plants
- To ensure the air concentrations were sufficiently high to obtain reliable results, the exposures were carried out in a chamber in which the air concentration should be brought to an arbitrarily high level

Experimental Conditions (2004)

July 6 (22:00)Clear & 16°CEarly (no fruit)Long term (2 plants)July 11 (22:00)Cloudy & 22°CEarly (no fruit)Short term (2 plants)July 21 (22:00)Cloudy & 26°CIntermediate (green fruit)Long term (2 plants)July 21 (22:00)Cloudy & 26°CIntermediate (green fruit)Long term (2 plants)
July 11 (22:00)Cloudy & 22°CEarly (no fruit)Short term (2 plants)July 21 (22:00)Cloudy & 26°CIntermediate (green fruit)Long term (2 plants)July 20 (24:20)Cloury & 0700IntermediateChart term
July 11 (22:00)Cloudy & 22°CEarly (no fruit)Short term (2 plants)July 21 (22:00)Cloudy & 26°CIntermediate (green fruit)Long term (2 plants)July 20 (24:20)Cloure & 2700IntermediateChart terms
July 21 (22:00)Cloudy & 26°CIntermediateLong term(green fruit)(2 plants)Luly 20 (24:20)Closer & 2700IntermediateChart terms
July 21 (22:00)Cloudy & 26°CIntermediateLong term(green fruit)(2 plants)July 20 (24:20)Closer & 270CIntermediateChart terms
(green fruit) (2 plants)
huh on (na.no) olean a nzon Intermediate oleant terme
July 22 (21:30) Clear & 27°C Internediate Short term
(green fruit) (2 plants)
Aug 23 (21:00) Clear & 15°C Late (ripe fruit) Long term
(1 plant)
Aug 24 (21:00) Clear &17°C Late (ripe fruit) Short term
(1 plant)

Good agreement with Exp 1

Maximum HTO and OBT Concentrations in Leaves

	Max. OBT	Time		
Ехр	(Bq/L)	(hrs)	HTO (Bq/L)	Туре
1	4.06 x 10 ⁵	12	3.96 x 10 ⁷	Night
2	3.66 x 10 ⁵	20	3.79 x 10 ⁷	Night
3	1.66 x 10 ⁵	12	3.48 x 10 ⁷	Night
4	4.15 x 10 ⁵	14	4.97 x 10 ⁷	Night
5	1.58 x 10 ⁵	12	4.43 x 10 ⁷	Night
6	2.08 x 10 ⁵	14	4.13 x 10 ⁷	Night
7	5.06 x 10 ⁵	6	5.27 x 10 ⁷	Day
8	5.30 x 10 ⁵	2	5.74 x 10 ⁷	Day

Measured OBT Formation Rates in Fruit

Exp.	Interval (h)	R _f Rate (h⁻¹)	Interval (h)	R _m Rate (h⁻¹)
1	361	2.76 x 10 ⁻⁶	-	-
2	-	-	-	-
3	73	8.97 x 10 ⁻⁵	529	2.09 x 10⁻⁵
4	5	1.21 x 10 ⁻⁴	-	-
5	73	2.32 x 10 ⁻⁵	505	1.10 x 10 ⁻⁵
6	6	3.90 x 10 ⁻⁵	-	-

 $R_{\rm f}$ is the rate calculated from the start of exposure to the time of the first OBT measurement

 $\rm R_{\rm m}$ is the rate calculated from the start of exposure to the time of the maximum OBT concentration

Plant Physiology

- Experiment at CRL in 2004
 - Tomato, radish and lettuce
 - Measured leaf photosynthetic rates from sunrise to sunset
 - Measured the starch concentrations in tomato leaves during the major growing season
 - Examined the patterns of starch concentration in leaves at night
 - Examined the variation of starch concentrations in leaves and fruit for 24 hours
 - Examined the pattern of starch concentration in leaves from dusk until dawn at Perch Lake

tl: tomato leave, rl: radish leave, ll: lettuce leaves

OBT Formation Modeling at Night

- Conceptual model
 - Has been developed based on carbohydrate allocation in plants in the dark (2002)
- Mathematical model
 - Has been developed based on a conceptual model of carbohydrate allocation in plants in the dark (2002)
- Implication to ETMOD
 - The mathematical model will be incorporated into an environmental tritium model to quantify the nocturnal formation of OBT in plants (ongoing)

Conceptual Model

- The conceptual model is composed of two parts
 - the transfer of tritium from air to leaf
 - nocturnal OBT formation
- Assumptions for OBT formation
 - hydrogen will act in concert with carbon in most processes
 - the main processes occurring in plants are starch metabolism and plant growth
 - biological transformation is not considered
 - all the photosynthetic starch produced and stored in the leaves during a given day is to be completely hydrolyzed during the following night
 - HTO is not transferred from leaf to sink
 - there are no processes occurring in the sink at night that result in the incorporation of tritium into organic material

	Le	eaf	
Daytime			
		Photosynthetic Production	
Nighttime	starch	Hydrolysis Assimilation	
		Hydrolysis in the presence of HTO	
	Tritia	ted glucose	
		E dible organs	

Carbohydrate Allocation in Mature Plant

Mathematical Model (1)

Equation (1)

$$M_{w} \frac{dC_{TFWT}^{\ell}}{dt} = v_{ex} (C_{a} - \frac{\rho_{s}}{\alpha} C_{TFWT}^{\ell})$$

 M_w is the mass of plant water per unit area of ground surface (kg m⁻²), \ddot{C}_{TFWT}^{ℓ} is the tritium concentration in the leaf water (Bq L⁻¹), t is time (s). v_{ex} is the exchange velocity between air and plant (m s⁻¹), C_a is the tritium concentration in air (Bq m⁻³),

 ρ_{s} is the density of water vapour in saturated air (kg m^-3) and

 $\alpha = 1.1$ is the quotient of T/H ratios in liquid and vapour.

Mathematical Model (2)

Equation (2)

$$C_{OBT}^{f}(\tau) = \frac{0.6}{M_{f}} A_{\ell} f_{s} D M_{s} \frac{\tau}{\tau_{n}} \overline{C_{TFWT}^{\ell}}$$

 $M_{\rm f}$ is the total fresh weight of all fruit on the plant

A_l is the total leaf area of the plant (dm²)

 f_s is the fraction of hydrolysed starch that is translocated from the leaf to the sink

D is the discrimination factor

 $\rm M_{s}$ is the number of hydrogen atoms

It is probably not worth much because its prediction didn't agree with observation.

Evaluation of OBT Formation at Night

- The conceptual and mathematical models
- The transfer of HTO from air to leaves (equation 1)
- OBT concentration in edible parts of non-leafy vegetables (equation 2)
- The ratios of predictions to observations range 0.45 to 416, with their geometric mean being 18
- Uncertainties associated with input parameters, observations and deficiencies in the model itself
- How OBT is produced or translated during the day following a night-time tritium exposure

Prediction OBT at Night

Scenario	ETMOD 2 (1996)	ETMOD 2 (2005)	Observation
Nighttime release, HTO in leaves after 2 hours (Bq/mL)	20	500	73,000
Nighttime release, OBT in grain at harvest (Bq/g)	14	6	280
Daytime release, HTO in leaves after 2 hours (Bq/mL)	102,000	102,000	89,000
Daytime release, OBT in grain at harvest (Bq/g)	50	18	140

BIOMOVS II Spring Wheat Scenario

A AECL EACL

Summary

- Reinforce the OBT formation theory at night
 - Not much difference between daytime and night time
- Model parameters
 - Optimization of various parameters
- Validation experiment under various weather conditions
- AECL's tritium (HTO and OBT) study
 - Long term project
 - International cooperation
 - Technical difficulties
 - Limited experience and knowledge

