EMRAS-2 Technical Coordination Meeting 23-25 January 2010 IAEA, Vienna (WG 7)

Environmental Modeling of tritium in India

P. M. Ravi

Bhabha Atomic Research Centre, India

Indian Nuclear Power program

- Mainly CANDU type PHWRs. A few LWRs are under construction and operational.
- Tritium is one of the major constituents of liquid and gaseous effluents.
- Located in seven sites with very different climatic conditions.
- Routine Environmental survey carried out by Environmental Survey Labs (ESL)
- Strict compliance to regulatory limits.

Public Dose from tritium

- Public dose from tritium during routine release is a small fraction of that from natural sources (1-3 $\mu Sv/y$).
- Dose from OBT during routine release is estimated to be less than 0.02 μ Sv/y.
 - P.M.Ravi, et al, Jl.Nuclear Science and Technology, Sup 5,p
 635 (2008).
- Design features ensures safety of the plants.
- A systematic emergency preparedness program exists to mitigate consequences of an accident.

Intervention Levels for various countermeasures

Counter measure	Intervention Levels (mSv)						
	Lower	Upper					
Domain-1							
Sheltering	20	100					
Evacuation	100	500					
Domain-2							
Sheltering	5	20					
Domain-3							
Control on food stuff	1	5					

EMRAS hypothetical exercise indicated that a release of the order of 10¹⁵ Bq/h can lead to public dose of 5 mSv, the intervention level for counter measures.

Studies conducted in India

- Computed wash out coefficients for different distances and for different rain fall rates.
 - V.Abrol, Bulletin of Radiation Protection, <u>13</u>(1)(1990).
- The rate of movement of tritium downward in soil is maximum 0.61cm/d during rain.
 - C.K.Agarwal, etal, Bulletin of Radiation Protection,
 13(1)(1990).
- Estimated residence time of tritium in tropical plants. Three compartments with mean residence time as 2.2d, 10.0d and 44.7d in garden grass.
 - Sadarangani, et al, Bulletin of Radiation Protection, 13(1)(1990).

Studies conducted in India

- The mean residence time of tritium and transpiration rate in a coconut palm tree is measured to be 124 hrs (5 days) and 2.2 L.h⁻¹ respectively.
 - K.Vasu, Bulletin of Radiation Protection, <u>13</u>(1)(1990).
- Estimated the transpiration rates of many tropical plants.
 - Selvi, et al, (IARP NC 2005) organized by IARP, at Mumbai during November 23-25, 2005.
- Site specific Air to soil Transfer Factor were found to vary from 0.15 to 0.89.
 - T.L. Ajith, etal, ICFCR-2008, Mangalore university, Mangalore, India.

Environmental modeling of tritium

- Developed a methodology for the estimation of dose to member of public due to accidental release of tritium.
 - Validated as part of EMRAS-1 (Hypothetical scenario).
- Needs refinement regarding
 - Conceptual clarity during dynamic conditions
 - Dynamicity to be imparted.
- Major uncertainty due to
 - Variability in HTO to OBT conversion factor.
 - Variability in Residence time of HTO and OBT in the plant.

Studies in Progress

- Simultaneously Estimated around the power plant
 - Air moisture HTO.
 - Soil moisture HTO
 - Plant Moisture HTO
 - A few OBT measurement
- The interpretation of results is in progress.
- Controlled experiment and aquatic environment in progress.

Tritium dynamics –Aquatic

- Estimate time required to reach steady state HTO concentration in fish.
- Estimate maximum HTO concentration in fish.
- Estimate OBT concentration as a function of time.
- To understand influence of biomatter growth.
- Arrive at SAR.
- Estimate HTO and OBT elimination rate.

Aquatic exposure data set

 About 20 fishes exposed to known tritium concentration. 5 fishes were grown in tritium free water as control. Fishes were sampled for analysis in every 3/4 days initially and once in a week after 20 days. Water quality and tritium activity measured periodically . Muscles, bones and other parts were separated. HTO and OBT estimated in muscles and other parts. Water content and organic content of the samples were also estimated.

Conclusions of fish experiment

- TFT reached steady state within 24 hours.
- Detectable amount of OBT was observed within 3 days.
- The Specific activity ratio (OBT/TFT) in muscles estimated.
- The Specific activity ratio (OBT/TFT) in other parts estimated.
- The results are under review.

Tritium dynamics -Terrestrial

HTO dynamics

- Estimate time required to reach maximum HTO concentration in plant consequent to an acute release.
- Estimate maximum HTO concentration
- Find out the influence of
 - Water content
 - Transpiration rate
 - Climatic conditions
- Arrive at an expression for time integrated HTO concentration in plant.

OBT dynamics

- Estimate OBT concentration in plant during growth.
- Find out the influence of
 - The time integrated concentration of TFT in the plant during its growth.
 - Bio mass growth rate in the plant.
 - Concentration of exchangeable hydrogen present in dry matter of plant (Edible and non edible).
- Arrive at an HTO to OBT conversion rate.

Proposed Environmental Chamber Experiment

Proposed work program-Stage-1

- Different types of plants will be grown in pots in the environmental chamber in controlled conditions.
- Water and nutrients will be provided as per standard practices of agriculture.
- Samples of plant parts will be collected at various stages of growth.
 - Increase in water content will be estimated.
 - Biomass growth rate will be estimated.
 - Organic compounds in dry biomass will be characterized and estimated.
 - Content of non exchangeable (carbon bound) and exchangeable hydrogen atoms will be estimated.

Proposed work program- Stage-2

- Plants will be exposed to known tritium concentration for known period of time in environmental chamber.
- Light intensity, humidity and temperature will be controlled.
- Plant body will be sampled at various stages of growth.
 - Specific activity of tritium in TFT pool in the plants will be estimated.
 - Specific activity of tritium in OBT pool will be estimated.
- TFT growth rate correlated with water content and transpiration rate in the plant.
- Time integrated TFT concentration in plant during growth period will be estimated.
- OBT concentration in various growth stages will be estimated.
- A normalized TFT to OBT conversion rate
 - per unit time per unit bio mass growth
 - Per unit time per unit exchangeable hydrogen concentration will be evaluated.

Uncertainties

Arises from

- Variability in size , water content , transpiration rate, associated water dynamics, etc.
- Variability in growth rate of biomass and biomass constituents
- Variability in utility –Human consumption, animal consumption, etc
- Segregate plants based on water content, transpiration rate and biomass growth.

Segregate the trees based on water content

Sr No.	Water content	Time	Observed	
		required to	max. HTO	
		reach	conc. In plant	
		max. HTO		
		conc.		
1	<1 ml			
2	1-100 ml			
3	100 ml -1 litre			
4	1 litre – 10 litre			
5	10 litre -100 litre			
6	100 litre - 1000litre			

Segregate trees based on biomass growth rate

Sr		OBT conversion		OBT	conversion	on rate	
No.		rate (Edible)			(Non edible /forage)		
	Growth rate	Day	Night	Mea	Day	Night	Mean
				n			
1	< 1g per						
	month						
2	1-10g per						
	month						
3	10-100 g						
	per month						
4	100-1000 g						
	per month						
5	>1000 g per						
	month						

Support required

- An OBT standard to validate the measurement.
- Test our experimental data in standard models.

THANK YOUFOR YOUR KIND ATTENTION