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Suggestions from Tatiana

• a) could you transform your experimental model into a 
generic model with competing preys and a predator (all 
exposed to chronic irradiation)

• b) It would be most interesting to apply the canonical model 
of population to the case of chronic radiation exposure, could 
you do it?

• c) The concept of metapopulation with extinction of some 
sub-populations and their repopulation due to migration 
seems to be very promising, it would be nice if you make a 
presentation about this concept; will you?



Three species model
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Interactions in the three-species microcosm



We developed a simulation model of microcosm.s
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Chronic exposure on SIM-COSM

In chronic exposure, Tetrahymena (most resistant species in 
individual level) is the most sensitive.
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Assumptions
• To develop a simple mathematical model, we 

focused on the direct interaction between 
species, and indirect interactions are ignored.
– whereas each species depends on metabolites from 

the others in microcosm and SIMCOSM.
• The ecosystem is not closed.

– Microcosm and SIMCOSM are self sustainable 
system and closed system.

• Spatial effects are omitted.
• Stochasticities are ignored.



Deterministic model
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E: population density of Euglena

x: population density of E. coli

y: population density of Tetrahymena

P: density of photosynthesis production

ri: growth rate of organism i

αi: mortality of organism i
hi: handling time of species i

a: predation rate of E. coli
b: predation rate of Tetrahymena



Analytic results
• The model has four equilibria

– All of species were extinguished.
– Euglena (producer species) was only existing.
– Only predator species (Tetrahymena) was 

extinction.
– All species were coexisted.

• Hysterisis (or resume shift) was not existed 
(No bistable cases were existed).

• Prey and predator populations were 
dynamically fluctuated when handling time of 
prey species is long.



Chronic irradiation

• LD50 values with single species cultured are 
4000Gy for Tetrahymena, 330 Gy for Euglena and 
13 Gy for E. coli.  

• From the analysis of the model, in chronic low dose 
rate irradiation, Tetrahymena who is the most 
resistant species in individual level is the most 
sensitive species.

• The analytical result is consistent with simulation 
results.



the canonical model



The canonical model
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r: intrinsic growth rate,
K: carrying capacity,
σe: intensity of the fluctuation of growth rate by environmental stochasticity,
σd: intensity of the fluctuation of growth rate by demographic stochasticity
(can be set as 1) 
ξe and ξd: white noise which corresponding to fluctuation of environment 
and demographic process, 

The canonical model is developed to calculate
the extinction risk of stable population

environmental 
stochasticity

demographic
stochasticitylogistic growth

Hakoyama, H. and Iwasa, Y., J. Theor. Biol., 204, 337-359, 2000.

Environmental stochasticity: the environment quality fluctuates year-to-year 
and the effects of fluctuation is common among the population.
Demographic stochasticity: number of offsprings is different between 
individuals.
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Estimation of parameters of the 
canonical model

• Intensity of demographic stochasticity(σd) can be set as 1 if 
number of offspring per female follows a Poisson distribution.
• Intensity of environmental stochasticity(σe) is estimated from 
time series data.

K=E[X]
σe

2=2rVar[X]/E[X]2

• Time unit is mean generation time.

ACX(τ)=(σe
2K2+K)e-r|τ|/(2r)

• Carrying capacity K is equivalent to mean population density.
• Intrinsic growth rate r should be obtained from other source,
because growth rate is small when population at equilibrium.



Estimation of intrinsic growth rate r of
the population which is consisted of multiple age.
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na(t): population density of age a at time t
f(a): fertility at age a
pa: survival rate per year at age a

Using Leslie matrix which describes life cycle of the organisms
( )
( )

( )

( ) ( ) ( ) ( ) ( )
( )

( )⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

+
+

−

tn

tn
tn

p
p

p
p

wfafff

tn

tn
tn

ww

a

w

MMOM

L

M

1

0

1

2

11

0

00

00
10

1

1
1

Averaged growth rate r of the population is obtained 
from solution of Euler-Lotka equation
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exposed population goes extinction earlier than control population
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∆r(D): reduction of reproductive success.
α(D): mortality per capita

Chronic radiation 

morbidity and genomic damage should be converted to
reduction of reproductive success or mortality. 



“average sustainable time (extinction risk)” can be calculated.
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Endpoint of the population risk is reduced mean extinction time
∆T=Tcontrol - Texposed

∆logT=logTcontrol - logTexposed

Risk evaluation of the radiation

∆1/T=1/Tcontrol - 1/Texposed for endangered species

for very large population

( )
( )

( ) dx
yDy

dy
Dx
DyeT

x
DKR

x

xyR

e
exposed ∫ ∫ +

⎟
⎠
⎞

⎜
⎝
⎛

+
+=

+
∞ −−0

0

'''
'

2
2

σ ( )exposedeexposed KrR 2/2' σ=



Meta-population



Meta population
• Population separated sub-populations and sub-Populations 

are connected each other.

A B

irradiation
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Subpopulation A can be sustained due to migration
from population B at high dose. However, when migration rate is
very high, total population goes extinction

m: migration rate

m



Generic formulation for meta-
population
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Xi: population density of sub-population i
ri: intrinsic growth rate of sub-population i
Ki: Carrying capacity of sub-population i
mji: migration rate from population j to i



Implications for meta-population

• Hakoyama and Iwasa applied the canonical model to meta-
population.

• Endpoint is extinction time of total population (Xtotal=ΣXn).
• Parameters (r, K, σe

2) are estimated from time series data of 
total population.

• Estimated parameters have many biases, so that the biases 
are removed by Monte Carlo bias-correction method using 
approximate maximum likelihood.

• Comparing with computer simulation and estimation from 
parameter aggregated canonical model, the estimation was 
very well when migration rate is not low. 

Hakoyama and Iwasa J. Theor. Biol., 232, 203-216, 2005


