

I AEA EMRAS II Biota Effects Group

Advances of the Multiple Stressor group

Hildegarde Vandenhove, Nathalie Vanhoudt, Almudena

Real, Clare Bradshaw, Nele Horemans

SCK•CEN, Biosphere Impact Studies

Objectives

- Review literature for multiple stressor data in which radiation was among the mix
- Query ecotoxicologists from the chemical industry to see what their most recent conclusions are relative to the need for multiple stressor analyses
- Report to the IAEA on whether this should be a topic requiring further exploration in the future
- If sufficient interest and resources, collaborate on a common, multi-stressor, radiological experiment
- This work is performed in conjunction with IUR.

Multiple Stressor database

 Scope: multiple stressor exposure with one of stressors external radiation or uptake of radionuclides

Including natural stressors (t°, pH, ...)

- Aim: Get an overview of what has been done so far, how it has been done, generalities on outcome
 - Status of the research in this area
- Approach
 - Literature review
 - Data compiling
 - ♣ Description of exp set-up, summary of results, limited QA/QC
 - In later stage, data compilation can be more detailed, if this has additional value

Multiple Stressor database

Study type **Ecosystem Multispecies studies Species studied Species 1 Common name Species 1** Latin name **Species 2 Common name Species 2** Latin name **Species 3 Common name Species 3 Latin name Species 4 Common name Species 4** Latin name List of stressors Stressor 1 **Exposure levels stressor 1 single** Stressor 2 **Exposure levels stressor 2 single** Stressor 3 **Exposure levels stressor 3 single** Stressor 4 **Exposure levels stressor 4 single** Stressor 5 **Exposure levels stressor 5 single Exposure levels combination** Short description of the experimental set up and conditions

Effects endpoints and results	
Umbrella effect	
Reproduction	Which effect ?
Morbidity	Which effect ?
Mortality	Which effect ?
Genetic	Which effect
Physiological	Which effect ?
Population relevant endpoints for	Which effect ?
multipspecies studies (e.g. Numbers of species)	
Other	Which effect ?
Other 2	Which effect ?
Short description of Results	
Please express results as far as possible in terms of : no deviation from addition, potentiation, synergy, antagonism	
Major conclusions from the study	
QA/QC	
Are we confident about the data?	
Can we use the data for dose response curve development?	Are we confident about the statistics and associated experimental design used to identify the interaction?
Reference 4	
ID of person who put in data	

Data collection finalised

- Terrestrial plants: 5
- Aquatic plants: 1
- Terrestrial animals: 14 (21 if including tumors)
- Aquatic animals: 5
- Aquatic microcosm: 1
- Marine estuaries: 19
- Yeast: 2
- (Cell culture: TA(2), AA (9)
- Big thanks to CLARE, ALMUDENA, NATHALIE

Some generalities

- Binary mixtures/exposures (except for 2 cases)
- Toxicants or environmental parameters (acidity, T°, starvation)
- Only one case where dose response curve was established for single stressors (prerequisite to say anything about synergism/antagonism!!!

Some specific info (1)

- 1. Terrestrial plants
 - ➤ 5 papers
 - Mostly laboratory studies, 1 field study
 - > All different test organisms (Arabidopsis, barley, birch ...)
 - Mostly gamma/X-irradiation combined with alpha/uranium, promutagens or heavy metals
 - Endpoints: mostly genetic effects, growth and oxidative stress
 - Antagonism/additive/synergism depends on exposure pattern, no clear trend
- 2. Aquatic plants
 - > 1 paper
 - Laboratory study
 - Lemna
 - Combination of uranium and copper
 - Endpoint: frond growth rate
 - Antagonism

Some specific info (2)

- 3. Terrestrial animals
 - > 14 papers (21 papers including tumors)
 - > All laboratory studies
 - Rats and mice were used as test species
 - Mostly gamma/X-irradiation combined with heat shock, caffeine, heavy metals, N-nitroso-N-ethylurea (ENU) (for tumor research)
 - Endpoints: mostly fetal death, malformations, growth retardation, tumor formation ...
 - No clear trend for antagonism/additive/synergism
- 4. Aquatic animals
 - > 4 papers
 - > All laboratory studies
 - Salmons and frogs were used as test organisms
 - Gamma/X-irradiation combined with metals, temperature or starvation
 - Endpoints: oxygen consumption, survival, bystander effects ...
 - Little information available for antagonism/additive/synergism

Some specific info (3)

- 5. Freshwater microcosm
 - > 1 paper
 - Laboratory study
 - Euglena gracilis + Tetrahymena thermophila + Escherichia coli (= 1 system)
 - Gamma irradiation combined with acids
 - > Endpoints: cell densities, chlorophyll *a* and ATP concentrations
 - > Additive
- 6. Marine estuarine
 - > 19 papers
 - All laboratory studies
 - Medaka or Japanese killifish, mummichog, eel, brine shrimp, salmon ...
 - Mostly gamma/X-irradiation combined with temperature, salinity ...
 - Endpoints: Egg hatchability, mortality, growth, development primordial germ cells ...
 - Often addition/synergism but most of the time no information available

Draft paper (JER) outline and request/proposal for contributors (1)

- Multiple stressor environmnent
 - #combinations is innoumerous
 - ♣ Environmental stressors (pH, T°, predators, ..)
 - Chemical mixtures
- Environmental standards and their requirements
 - Generally developed for single contaminants
 - Ecotox tests: contaminants in isolation
 - Environ characteristics (including other stressors) will influence effect tresholds
- Approaches to dose response curves (NV)
 - Independent action/concentration addition and deviations thereoff
 - Including other MS effects models
 - How far dose additivity correct assumption: alpha, beta, gamma
- Combined effect of substances
 - Different exposure modes/diff modes of action/diff target organs
 - Interaction can occur at all levels adsorption, metabolisation, decontamination mechanisms, damage repair mechanisms

Draft paper (JER) outline and proposal for contributors (2)

- Presentation of data from the different ecosystem - organisms combination. Discussion in light of
 - Type of stressors studied
 - Methodology/approach used
 - Lab/fields
 - Endpoints considered
 - Effects observed
 - Validity of approach and (hence) data
 - Terrestrial and aquatic plants + microcosm (NV, HV)
 - Terrestrial animals (Almudena)
 - Aquatic animals (Karolina/Carmel and C°?)
 - Marine animals (Clare)
- Conclusions and recommendations for future research (all)

11

• Draft May 2010

Look what has been done for chemicals

- Contributors: Tom, Tamara, Nele, <u>Carmel</u>, a colleague of David, Hildegarde
- Learn from chemical ecotoxicology concentrating on NoMiracle
- Report: approach with chemicals and how it can be transferred to radiation protection
- Timing
 - Look at suitable reports from NoMiracle and their availability (March 2009)
 - End report: Dec 2010
- No Progress since last time

MS-effect modelling course Preliminary programme

	Day 1	Day 2	Day 3
Morning session	Opening and registration <u>Thomas Backhaus</u> (Göteborg University, Sweden) - Experimental design - Introduction to reference models (concentration addition and independent action) and to their strengths and sensitivities	Claus Svendsen (CEH, UK) Testing for deviations from reference models using surface design or isoboles	Stefan Van Dongen (University of Antwerp, Belgium) - Best-fit method for concentration-response curves - Statistical testing of deviations from reference models (including calculation of confidence belts)
Afternoon session	Thomas Backhaus continuedCalculus session(Nathalie Vanhoudt, Nele Horemans, SCK•CEN, Belgium): prediction of mixture effect from single concentration-response curve	Nina Cedergreen (University of Copenhagen, Denmark) to be confirmed - Use of mixture toxicity within REACH and Water framework directive - Can the choice of endpoint lead to contradictory results 13	Stefan Van Dongen continuedCalculus session continuedClosing remarks

MS-effect modelling course

- Organised by SCK•CEN
- Suggestion: May 2010
- Possibly some funding by IUR for foreign attendee(s)
- If 20 participants: ~250 EUR/participant
 - (travel and accomodation teachers, small fee for lecturers, course material, rent of auditoria, lunches; no SCK salaries!)

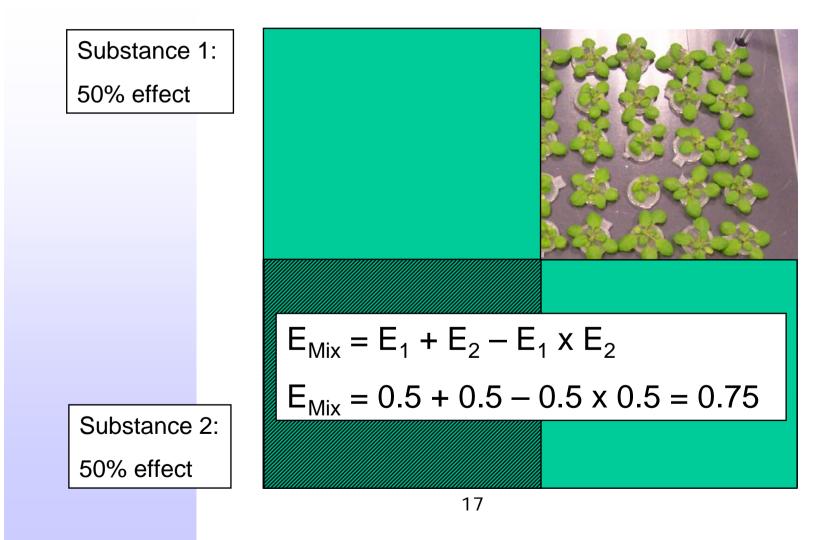
Concentration addition

• Sham experiment:

0.5TU + 0.5TU = 1TU

0.1TU + 0.9TU = 1TU

- Functional relation between single substance TU and mixture TU!
- Similarly acting compounds!



Independent Action (IA)

- Dissimilarly acting chemicals
- Assumption 1: toxicity each chemical is not influenced by presence other chemicals
- Assumption 2: all chemicals affect same biological endpoint
- Same effect via different pathways

Independent Action for Binary Mixture

