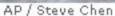
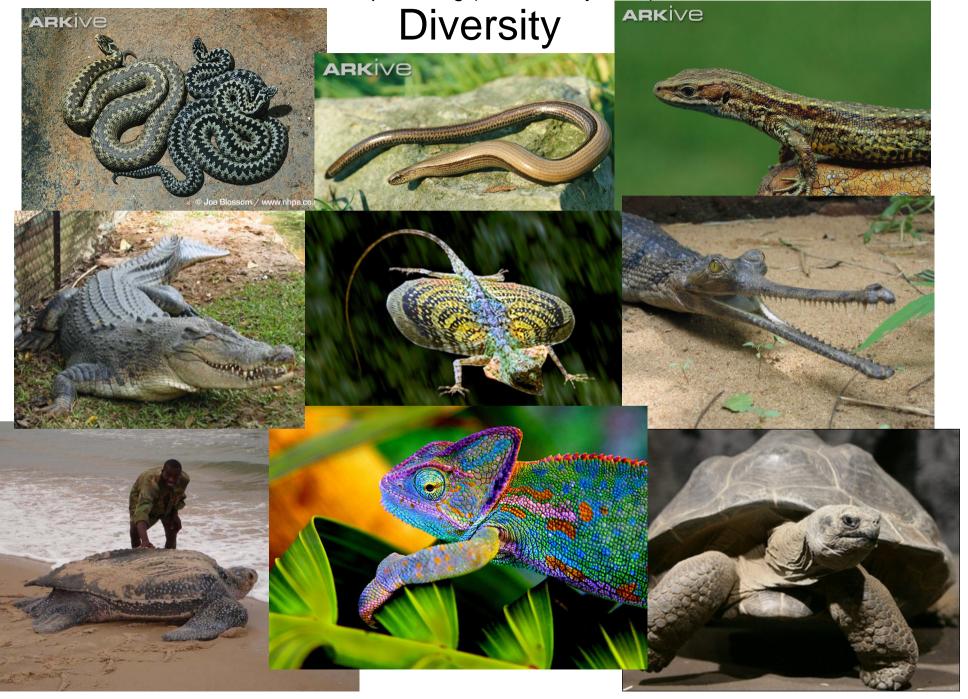


What are reptiles?

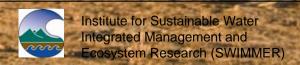

- Animals in the Class Reptilia
- c. 8000 species
 - endangered (hence protected)
- 'Types' of reptile
 - Snakes
 - Lizards
 - Crocodilians
 - Turtles, terrapins and tortoises
- Poikilotherms external heat source (the sun)
- Keratinised scales on skin & some have shells
- Herbivores and carnivores
- Comparable vertebrates
 - Evolution birds
 - Ecological niche mammals

Why bother about transfer to reptiles?

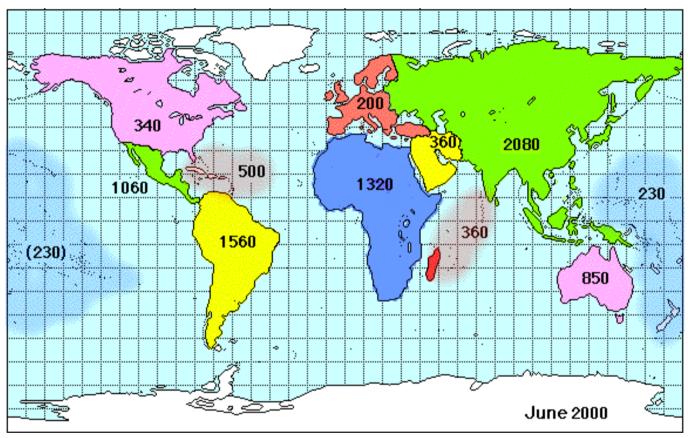


IAEA EMRAS II Wildlife Transfer Group Meeting (28th January 2010)

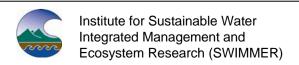
Ecosystem function



IAEA EMRAS II Wildlife Transfer Group Meeting (28th January 2010)


Biomass

- Mammals and birds have metabolic rates 7-10 times higher than poikilotherms of equivalent size
- Largely due to energy endotherms invest in heat production (c. 90% of intake)
- Poikilotherms therefore convert energy to biomass more economically
- If ambient temperature high enough, same food base can support higher poikilotherm biomass than endotherm biomass
- Therefore, in arid areas where vegetation growth may be insufficient for mammals, reptiles can thrive
- Reptiles can be the dominant animal biomass in these ecosystems



Likelihood of being impacted by discharges

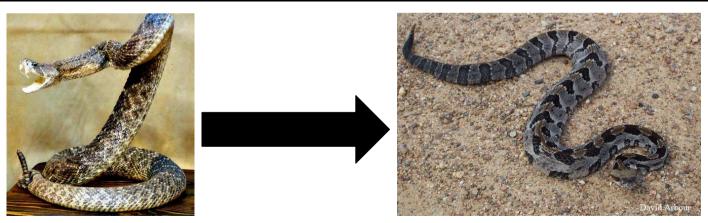
Worldwide Diversity of Reptiles (as of June 2000)

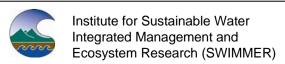
www.reptile-database.org/db-info/diversity.html

Therefore need to understand trophic transfer

Constructing the database

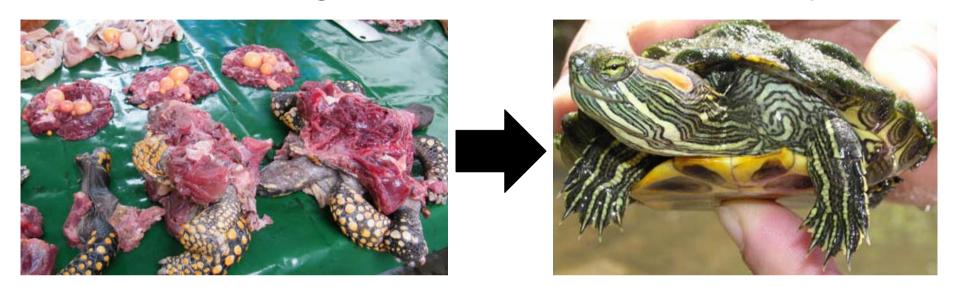
- Data sources
 - Published studies
 - Unpublished reports ('grey' literature) + data
 - In-house data sets
 - Foreign-language literature
 - e.g. 'Mine' Russian-language literature enlist a Russian herpetologist!
- Problems
 - Only 2 studies derive CRs (Barnett et al., 2009; Wood et al., 2009)
 - No media data (locate different sources)
 - Dry wt:fresh wt
 - Data reported for specific reptile tissues
 - LODs


Constructing the database


- Data sources
 - Published studies
 - Unpublished reports ('grey' literature) + data
 - In-house data sets
 - Foreign-language literature
 - e.g. 'Mine' Russian-language literature enlist a Russian herpetologist!
- Problems
 - Only 2 studies derive CRs (Barnett et al., 2009; Wood et al., 2009)
 - No media data (locate different sources)
 - Dry wt:fresh wt
 - Data reported for specific reptile tissues
 - LODs

Dry weight:fresh weight conversion

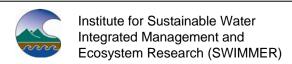
Tissue	n	dwt:fwt	Tissue	n	dwt:fwt
Blood	1	0.21	Lung	12	0.27
Bone	3	0.71	Muscle	201	0.22
	59	0.24 (ash wt:fwt)	Scute	57	0.42
Brain	4	0.24	Spleen	1	0.25
Carcass	82	0.26	Whole-body	45	0.29
Kidney	138	0.28		3	0.07 (ash wt:fwt)
Liver	98	0.27	Egg	2	0.51



IAEA EMRAS II Wildlife Transfer Group Meeting (28th January 2010)

Converting tissue data to whole-body

$$C_{WB} = \frac{C_T \times FM_T}{B_T}$$


C_{WB} - whole-body activity concentration (Bq/kg fwt)

C_T - activity concentration of tissue T (Bq/kg fwt)

FM_T - fractional mass of tissue T relative to the whole-body

 $\boldsymbol{B}_{\boldsymbol{T}}$ - fraction of the total body burden of the radionuclide in tissue \boldsymbol{T}

Need data on M_T and B_T - Major literature review required!

Fractional mass (FM_T)

Tissue (T)	Generic reptile (animal)	Turtle (animal)	Tissue (T)	Generic reptile (egg)
Bone	7.22E-02	4.20E-01	Albumin	2.48E-01
Kidney	3.00E-03	3.00E-03	Eggshell	1.22E-01
Liver	4.75E-02	5.80E-02	Yolk	6.31E-01
Muscle	8.77E-01	5.19E-01	Yolk-Albumin	8.78E-01

Fractional mass (FM_T)

Tissue (T)	Generic reptile (animal)	Turtle (animal)	Tissue (T)	Generic reptile (egg)
Bone	7.22E-02	4.20E-01	Albumin	2.48E-01
Kidney	3.00E-03	3.00E-03	Eggshell	1.22E-01
Liver	4.75E-02	5.80E-02	Yolk	6.31E-01
Muscle	8.77E-01	5.19E-01	Yolk-Albumin	8.78E-01

Fractional mass (FM_T)

Tissue (T)	Generic reptile (animal)	Turtle (animal)	Tissue (T)	Generic reptile (egg)
Bone	7.22E-02	4.20E-01	Albumin	2.48E-01
Kidney	3.00E-03	3.00E-03	Eggshell	1.22E-01
Liver	4.75E-02	5.80E-02	Yolk	6.31E-01
Muscle	8.77E-01	5.19E-01	Yolk-Albumin	8.78E-01

Tissue conversions

• 30 elements

	Bone	Kidney	Liver	Muscle
Ag	1.04E+01	4.20E+00	4.92E-02	3.37E+01
Αl	1.19E-01	4.31E+00	1.50E+00	2.43E+00
As	6.58E-01	6.68E-01	4.81E-01	1.11E+00
Ba	7.97E-02	6.41E+00	8.88E+00	9.95E+00
Ca	7.24E-02	1.86E+02	2.35E+02	2.74E+02
Ca	4.40E-01	3.68E+00	1.69E+01	1.23E+01
Co	1.77E+00	1.22E-02	1.16E-01	2.90E+00
Cr	5.08E-01	7.82E-01	9.63E-01	1.09E+00
Cs	3.53E+00	3.97E-01	1.27E+00	9.39E-01
Cu	7.34E-01	5.32E-01	6.00E-02	8.45E+00
Fe	2.72E+00	7.06E-01	7.85E-02	2.41E+00
Hg	7.96E-01	2.13E-01	1.86E-01	1.37E+00

Bone

Tissue conversions

30 elements

Non-turtle

Turtle

Kidney Ag 1.04E+01 4.20E+00 4.92E-02 3.37E+01Αl 1.19E-01 4.31E+00 1.50E+00 2.43E+00

6.58E-01 6.68E-01 4.81E-01 1.11E+00 As

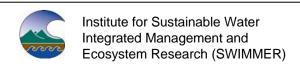
Liver

Ba 7.97E-02 6.41E+00 8.88E+00 9.95E+00

Ca 7.24E-02 1.86E+02 2.35E+02 2.74E+02

4.40E-01 3.68E+00 1.69E+01 1.23E+01 Ca

1.22E-02 1.16E-01 2.90E+00 Co 1.77E+00

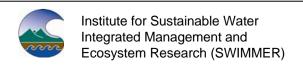

Cr 5.08E-01 7.82F-01 9.63E-01 1.09E+00

Cs 3.53E+003.97E-01 1.27E+00 9.39E-01

7.34E-01 5.32E-01 6.00E-02 8.45E+00Cu

7.06E-01 Fe 2.72E+007.85E-02 2.41E+00

7.96E-01 2.13E-01 1.86E-01 1.37E+00 Hg


Muscle

The CR database

- 251 data lines (856 measurements)
 - Snakes (13 species)
 - Lizards (16 species)
 - Turtles and tortoises (8 species)
 - Crocodilians (3 species)

- 35 elements in freshwater reptiles
 - Am, As, B, Ba, Ca, Cd, Ce, Cm, Co, Cr, Cs, Cu, Fe, Hg, K, La, Mg, Mn, Mo, Na, Ni, Pb, Po, Pu, Ra, Rb, Sb, Se, Sr, Th, U, V, Y, Zn, Zr
- 15 elements in terrestrial reptiles
 - Am, C, Cs, Cu, K, Mn, Ni, Pb, Po, Pu, Sr, Tc, Th, U, Zn
- 10 elements in freshwater reptile eggs
 - As, Cd, Cr, Cu, Fe, Hg, Mn, Pb, Zn

The CR database cont.

- Aquatic ecosystems
 - mainly United States and Canada
 - crocodilian mainly Australia & China
 - most data for snakes and turtles
 - no marine data

- Terrestrial ecosystems
 - Australia, Canada, Europe,
 Former Soviet Union & United States
 - mainly lizards and snakes

Sand dune vs non-sand dune

 CRs for small mammals shown to be 2 orders of magnitude lower than other terrestrial ecosystems (based on ERICA CRs – Beresford et al., 2008)

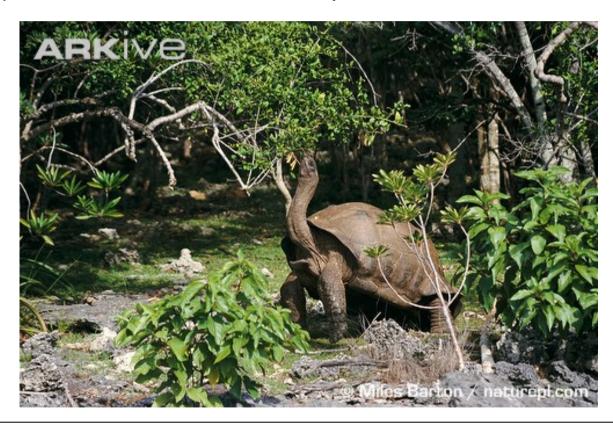
Organism	Am	Cs	Pu
Sand dune mammal	4.25E-04	2.16E-02	9.33E-04
Mammal	4.08E-02	2.87E+00	2.34E-02

Adapted from: Wood et al. (2009) Radionuclide transfer to invertebrates and small mammals in a coastal sand dune ecosystem. Sci Total Environ

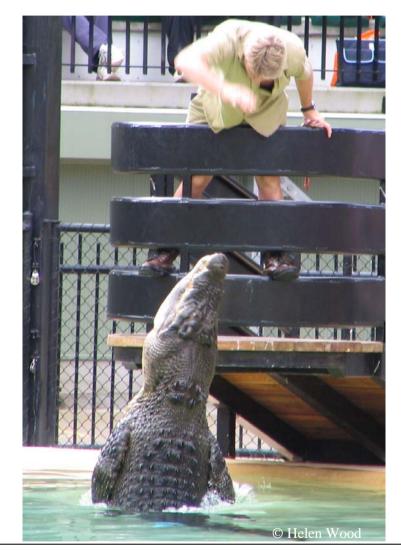
Sand dune vs non-sand dune cont.

- Am
 - sand dune CR = 8.2 x 10⁻²
 - Maralinga $CR = 4.4 \times 10^{-3}$
 - Biophysical differences and/or source of Am

- sand dune CR = 1.3 x 10⁻²
- other terrestrial $CR = 6.4 \times 10^{-4}$


- Actinides show opposite trend to mammals (reptile CRs higher at dunes)
 - Comparable or higher trophic levels than mammals
 - Food-chain differences?
- Cs CRs were comparable

Want to know more?


- Data feeding in to the Wildlife Transfer Handbook
- Wood MD, Beresford NA, Semenov DV, Yankovich TL, Copplestone D (submitted) Radionuclide transfer to reptiles. Radiat Environ Biophys

Acknowledgements

- Nick Beresford CEH
- David Copplestone EA
- Dmitry Semenov Russia
- Tamara Yankovich Canada

Thanks and Goodbye!

