Progress on the Development of Parameter Values for Reference Animals and Plants

> IAEA EMRAS II Transfer Group Vienna, Austria, 25-29 January 2010

T.L. Yankovich AREVA Resources Canada tamara.yankovich@AREVA.ca

Where . . .

Doses to non-human biota ("wildlife") are typically predicted on a whole-body basis.

 However, depending on the purpose of a given study, tissue-specific measurements may be taken, as opposed to those for the whole body.

(e.g., those for edible tissues in monitoring programs designed to assess radionuclide transfer to humans).

<image><image><image><image><image>

Where the Purpose was .

To estimate whole-body radionuclide concentrations based on measurements taken for specific tissues.

Data Requirements:

Measurements taken at under steady state conditions. Realistic exposure conditions for laboratory experiments. Concentration data for at least two tissues or for one tissue plus whole-body. Tissue mass data for at least one tissue plus whole-body. Measurements taken for the same organism or group of organisms.

Scope of Compilation:

Radionuclides of stable elements. Freshwater, marine and terrestrial ecosystems. Wild and domesticated vertebrates and invertebrates. Whole-body, muscle, bone, liver, kidney and gonad tissues.

Where possible, animals were categorized by IAEA 'wildlife' category.

Com	oitoliq	on of Com	partment s	Size
	Table 1 Predictive relati tissue weight (ir and Hughes, 196			
	Tissue type	Relationship between whole body weight and tissue biomass	Tissue-to-body weight (%) geomean (Min.–Max.) [n]	
	Bone Gills Scales	Y = 40.68X ^{1.03} (r ² = 0.992) n.a. n.a.	4.71 (2.34–9.1) [17] 1.3 (0.7–1.8) [4] 7.0 [1]	
	Brain Eyes Gizzard	$\begin{split} Y &= 0.960 X^{0504} \ (r^2 = 0.747) \\ Y &= 5.36 X^{0.76} \ (r^2 = 0.727) \\ \text{n.a.} \end{split}$	$0.087 (7.02 \times 10^{-5} - 2.29)$ [183] 0.504 (0.034 - 1.65) [174] 1.80 (1.8, 1.8) [2]	
	Gizzard Contents Gonads (female)	n.a. $Y = 3.67 X^{0.729} (r^2 = 0.340)$ $Y = 2.02 Y^{1.13} (r^2 = 0.421)$	0.242 (0.03–0.7) [5] 1.53 (0.040–6.41) [39]	
	Heart Kidney Liver	Y = 2.03X (r = 0.421) $Y = 1.92X^{100} (r^2 = 0.915)$ $Y = 5.16X^{1.03} (r^2 = 0.891)$ $Y = 13.42X^{1.08} (r^2 = 0.899)$	0.500 (0.054–1.8) [35] 0.192 (0.077–2.71) [180] 0.518 (0.155–1.44) [137] 1.43 (0.222–6.23) [216]	
	Muscle Skin Skin and scales	n.a. n.a. n.a.	64.3 (55.3–76.7) [5] 7.1 [1] 12.0 (9.3–14.1) [5]	
	Spleen Stomach/ intestine	$Y = 1.12X^{0.98} (r^2 = 0.856)$ Y = 39.61X + 36.76 (r ² = 0.894)	0.112 (0.031–0.413) [77] 5.06 (0.200–12.3) [157]	
	Thyroid	$Y = 0.0131X + 8 \times 10^{-5}$ ($r^2 = 0.628$)	$1.42 \times 10^{-3} (2.03 \times 10^{-6} - 0.162)$ [170]	
	Viscera	n.a.	10.4 (6.5–16.1) [3]	

sciencine incriature (inc.) (as summi	arized in Ya	ankovich and Beaton, 2000).	ssues from fishes $(n = 15)$ collected	in Perch Lake (PL) relative to those	e reported in th	
Type of nuclide	Nuclide, n	Mean tissue-to-muscle concentration ratio (CR_t) in edible fish tissues ± standard deviation [n]				
		Gonads	Liver	Bone	Whole	
Alkali metals	Cs	0.578 ± 0.185 (PL)	0.45 ± 0.035 (PL)	2.07 ± 0.62 (PL)	n.m.	
	K	0.615 ± 0.205 (PL)	0.56 ± 0.053 (PL)	2.49 ± 0.65 (PL)	n.m.	
	Na	2.2 [1] (lit.); 1.29 ± 0.194 (PL)	1.1 [1] (lit.); 1.37 ± 0.31 (PL)	8.0 [1] (lit.); 9.28 ± 2.16 (PL)	n.m.	
	Rb	0.659 ± 0.240 (PL)	0.57 ± 0.020 (PL)	$2.4[1]$ (lit.); 2.42 ± 0.77 (PL)	n.m.	
Alkaline earth metals	Ba	0.441 ± 0.154 (PL)	0.41 ± 0.17 (PL)	235 ± 205 (PL)	n.m.	
	Ca	0.888 ± 0.670 (PL)	0.87 ± 0.56 (PL)	954 ± 709 [9] (lit.); 938 ± 342 (PL)	n.m.	
	Mg	0.701 ± 0.200 (PL)	0.73 ± 0.10 (PL)	14.7 ± 2.53 (PL)	n.m.	
	Sr	1.1 [1] (lit.); 1.14 ± 0.638 (PL)	2.9 [1] (lit.); 1.18 ±0.69 (PL)	291 ± 389 [7] (lit.); 971 ± 217 (PL)	23 ± 27 [2] (lit.)	
Basic metals	Al	2.04 ± 2.10 (PL)	2.13 ± 1.96 (PL)	3.08 ± 2.89 (PL)	n.m.	
	TI	1.87 ± 1.92 (PL)	3.97 ± 3.82 (PL)	12.2 ± 3.87 (PL)	n.m.	
	Pb	1.9 ± 1.9 [19] (lit.); 0.980 ± 0.535 (PL)	3.9 ± 11 [67] (lit.); 16.1 ± 23.5 (PL)	15 ± 9.5 [11] (lit.); 6.26 ± 1.91 (PL)	9.0 ± 15 [14] (lit	
Rare earth elements (Lanthanides)	Ce	16.8 ± 16.5 (PL)	4.26 ± 0.68 (PL)	6.10 ± 4.79 (PL)	n.m.	
	Eu	3.48 ± 3.94 (PL)	2.32 ± 0.57 (PL)	11.8 ± 1.04 (PL)	n.m.	
	La	17.3 ± 18.8 (PL)	3.3 [1] (lit.); 3.86 ± 1.38 (PL)	8.0 [1] (lit.); 6.63 ± 6.64 (PL)	13 [1] (lit.)	
Rare earth elements (Actinides)	Th	2.89 ± 3.07 (PL)	1.78 ± 1.30 (PL)	11.6 ± 16.4 (PL)	n.m.	
	U	4.43 ± 5.69 (PL)	2.8 ± 1.1 [5] (lit.); 1.74 ± 1.51 (PL)	56 ± 72 [12] (lit.); 6.37 ± 3.86 (PL)	14 ± 22 [7] (lit.)	
Metalloids	Sb	1.87 ± 0.887 (PL)	2.55 ± 2.63 (PL)	8.95 ± 3.34 (PL)	n.m.	
	Те	3.34 ± 2.07 (PL)	2.26±0.98 (PL)	3.51 ± 1.26 (PL)	n.m.	
Non metals	Р	2.4 [1] (lit.); 1.07 \pm 0.306 (PL)	5.5 [1] (lit.); 1.21 ±0.24 (PL)	16 [1] (lit.); 46.3 ± 8.99 (PL)	n.m.	
Transition metals	Cd	2.8 ± 4.1 [22] (lit.); 1.72 ± 1.01 (PL)	23 ± 53 [32] (lit.); 7.85 ± 9.05 (PL)	3.93 ± 4.22 (PL)	n.m.	
	Co	4.35 ± 2.33 (PL)	5.7 ± 7.6 [5] (lit.); 3.45 ± 2.34 (PL)	4.1 ± 5.3 [8] (lit.); 23.1 ± 22.6 (PL)	12 ± 22 [4] (lit.)	
	Cr	1.69 ± 1.16 (PL)	1.8 [1] (lit.); 1.40 ± 0.40 (PL)	0.27 [1] (lit.); 8.91 ± 9.84 (PL)	3.8 [1] (lit.)	
	Cu	2.3 ± 1.4 [14] (lit.); 6.23 ± 5.42 (PL)	30 ± 56 [26] (lit.); 35.0 ± 27.3 (PL)	4.1 [1] (lit.); 2.16 ± 0.355 (PL)	n.m.	
	Fe	2.4 ± 2.4 [9] (lit.); 29.0 ± 24.8 (PL)	18 ± 19 [16] (1it.); 203 ± 151 (PL)	1.5 ± 0.91 [5] (lit.); 4.19 ± 1.94 (PL)	5 [1] (lit.)	
	Mn	1.6 ± 1.1 [11] (lit.); 13.8 ± 10.9 (PL)	4.6 ± 4.0 [19] (lit.); 6.42 ± 1.85 (PL)	8.9 ± 2.3 [4] (lit.); 325 ± 148 (PL)	$9.1 \pm 10[3]$ (lit.	
	Mo	8.30 ± 7.15 (PL)	31.8 ± 7.75 (PL)	4.97 ± 1.24 (PL)	n.m.	
	Ni	0.60 ± 0.011 [2] (lit.); 1.89 ± 0.345 (PL) 2.1 ± 1.1 [11] (lit.); 2.14 ± 1.09 (PL)	11.3 ± 5.03 (PL)	n.m.	
	Sc	Not available	3.2 ± 4.6 [2] (lit.)	11 ± 15 [2] (lit.)	30 [1] (lit.)	
	V	3.24 ± 3.00 (PL)	3.24 ± 2.01 (PL)	6.18 ± 6.00 (PL)	n.m.	
	Y	9.60 ± 14.6 (PL)	5.12 ± 2.94 (PL)	6.37 ± 3.86 (PL)	n.m.	
	Zn	7.3 ± 5.1 [21] (lit.); 15.1 ± 9.83 (PL)	5.8 ± 6.6 [39] (lit.); 9.02 ± 5.59 (PL)	7.3 ± 2.1 [6] (lit.); 23.6 ± 12.1 (PL)	99 [1] (lit.)	

Summary of Outcome: Animals

- A series of look-up tables with tissue-to-whole body for radionuclides and stable isotopes in the specified animal categories.
- As context, tables containing the % biomasses of specified tissues with respect to the whole-body biomass have been compiled.
- Data are also available on tissue water contents, ash contents, % C contents.

Status Summary:

Look up tables have been generated for marine fish, mammals, birds reptiles and amphibians (freshwater fish tables to be finalized this week).

Based on these data, a paper has been drafted for submission as part of a special edition.

Input of data has been received from UK, Japan, Norway, Sweden, Australia and Canada.

Work is underway to compile data on plants (participation welcome!)

atab	ase QA/QC Document:	
1. BA	CKGROUND INFORMATION	1
1.1	DOCUMENT OBJECTIVE	2
2. CO	LLECTION AND ANALYSIS OF AQUATIC MEDIA	2
2.1 2.1 2.1 2.1 2.2 2.2 2.2 2.2 2.2 2.2	SURFACE WATER 1 Physicochemical Measurements 2 Sample Preparation for Analysis of Major and Minor Cations 3 QA/QC SEDIMENT 1 Sample Homogenization 2 Microwave Digestion 3 Sample Analysis 4 Assurance/Quality Control (QA/QC)	2 3 3 3 4 4 4 4 5
3. PR	OCESSING OF NON-HUMAN BIOTA FOR ANALYSIS	5
3.1 3.3	SAMPLE PREPARATION QA/QC	5 6
1 DF	FERENCES	6

